I'm searching for a "simple" proof of: \begin{align}\int_0^1 \frac{\arctan^2 x\ln x}{1+x}dx=-\frac{233}{5760}\pi^4-\frac{5}{48}\pi^2\ln ^2 2+\text{Li}_4\left(\frac{1}{2}\right)+\frac{7}{16}\zeta(3)\ln 2+\frac{1}{24}\ln^4 2+\pi \Im\left(\text{Li}_3\left(1+i\right)\right)-\frac{1}{4}\text{G}\pi\ln 2\end{align}
The context: I have written a script for Pari GP to search heuristically for certain close-forms. Testing my script with the above integral i was lucky enough to find something. The script searchs for integer linear relation between the integral and some constants: \begin{align}\pi^4,\pi\ln^3 2,\pi^2\ln^2 2,\pi^3\ln 2,\text{Li}_4\left(\frac{1}{2}\right),\zeta(3)\ln 2,\zeta(3)\pi,\ln^4 2,\pi \Im\left(\text{Li}_3\left(1+i\right)\right), \Im\left(\text{Li}_3\left(1+i\right)\right)\ln 2,\text{G}^2,\text{G}\ln^2 2,\text{G}\pi^2,\text{G}\pi\ln 2\end{align}
NB: Using the algorithm with $\displaystyle\int_0^1 \dfrac{\ln^2(1+x^2)\ln x}{1+x}dx$ gives someting too.
Addendum:
PARI GP script:
beta(n)={intnum(x=0,1,(-log(x))^(n-1)/(1+x^2))}; lindep4(x)={ NAME=["x","Pi^4","Pilog(2)^3","Pi^2log(2)^2","Pi^3log(2)","polylog(4,1/2)","zeta(3)log(2)","zeta(3)Pi","log(2)^4","Piimag(polylog(3,1+I))","log(2)imag(polylog(3,1+I))","Catalan^2","Catalanlog(2)^2","CatalanPi^2","Catalanlog(2)Pi","beta(4)","imag(polylog(4,1+I))"]; VAL=[x,Pi^4,Pilog(2)^3,Pi^2log(2)^2,Pi^3log(2),polylog(4,1/2),zeta(3)log(2),zeta(3)Pi,log(2)^4,Piimag(polylog(3,1+I)),log(2)imag(polylog(3,1+I)),Catalan^2,Catalanlog(2)^2,CatalanPi^2,Catalan*log(2)*Pi,beta(4),imag(polylog(4,1+I))]; L=lindep(VAL); for(i=2,length(L),if(-L[i]/L[1]>0,print1("+",-L[i]/L[1],NAME[i]));if(-L[i]/L[1]<0,print1(-L[i]/L[1],NAME[i]))); }
for example:
\p 100
lindep4(intnum(x=0,1,atan(x)^2*log(x)/(1+x)))
NB: To improve the script add $\beta(4)$ value and some polygamma values.
PS: the PARI GP script has been updated to take into account more integrals.
Try this one: $\displaystyle \int_0^1\frac{\ln^2(1+x^2)\ln x}{1+x^2}dx$