A few days ago, I posted the following problems
Prove that \begin{equation} \int_0^{\pi/2}\ln^2(\cos x)\,dx=\frac{\pi}{2}\ln^2 2+\frac{\pi^3}{24}\\[20pt] -\int_0^{\pi/2}\ln^3(\cos x)\,dx=\frac{\pi}{2}\ln^3 2+\frac{\pi^3}{8}\ln 2 +\frac{3\pi}{4}\zeta(3) \end{equation}
and the OP receives some good answers even I then could answer it.
My next question is finding the closed-forms for
\begin{align} \int_0^{\pi/4}\ln^2(\sin x)\,dx\tag1\\[20pt] \int_0^{\pi/4}\ln^2(\cos x)\,dx\tag2\\[20pt] \int_0^1\frac{\ln t~\ln\big(1+t^2\big)}{1+t^2}dt\tag3 \end{align}
I have a strong feeling that the closed-forms exist because we have nice closed-forms for \begin{equation} \int_0^{\pi/4}\ln(\sin x)\ dx=-\frac12\left(C+\frac\pi2\ln2\right)\\ \text{and}\\ \int_0^{\pi/4}\ln(\cos x)\ dx=\frac12\left(C-\frac\pi2\ln2\right). \end{equation} The complete proofs can be found here.
As shown by Mr. Lucian in his answer below, the three integrals are closely related, so finding the closed-form one of them will also find the other closed-forms. How to find the closed-forms of the integrals? Could anyone here please help me to find the closed-form, only one of them, preferably with elementary ways (high school methods)? If possible, please avoiding contour integration and double summation. Any help would be greatly appreciated. Thank you.