Here is a new challenging problem:
Show that
$$I=\int_0^{\pi/2} x\frac{\ln(\cos x)}{\sin x}dx=2\ln(2)G-\frac{\pi}{8}\ln^2(2)-\frac{5\pi^3}{32}+4\Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}$$
My attempt:
With Weierstrass substitution we have
$$I=2\int_0^1\frac{\arctan x}{x}\ln\left(\frac{1-x^2}{1+x^2}\right)dx\overset{x\to \frac{1-x}{1+x}}{=}4\int_0^1\frac{\frac{\pi}{4}-\arctan x}{1-x^2}\ln\left(\frac{2x}{1+x^2}\right)dx$$
$$=\pi\underbrace{\int_0^1\frac{1}{1-x^2}\ln\left(\frac{2x}{1+x^2}\right)dx}_{I_1}-4\underbrace{\int_0^1\frac{\arctan x}{1-x^2}\ln\left(\frac{2x}{1+x^2}\right)dx}_{I_2}$$
By setting $x\to \frac{1-x}{1+x}$ in the first integral we have
$$I_1=\frac12\int_0^1\frac{1}{x}\ln\left(\frac{1-x^2}{1+x^2}\right)dx$$
$$=\frac14\int_0^1\frac{1}{x}\ln\left(\frac{1-x}{1+x}\right)dx=\frac14\left[-\text{Li}_2(x)+\text{Li}_2(-x)\right]_0^1=-\frac38\zeta(2)$$
For the second integral, write $\frac{1}{1-x^2}=\frac{1}{2(1-x)}+\frac{1}{2(1+x)}$
$$I_2=\frac12\int_0^1\frac{\arctan x}{1-x}\ln\left(\frac{2x}{1+x^2}\right)dx+\frac12\int_0^1\frac{\arctan x}{1+x}\ln\left(\frac{2x}{1+x^2}\right)dx$$
The first integral is very similar to this one
$$\int_0^1\frac{\arctan\left(x\right)}{1-x}\, \ln\left(\frac{2x^2}{1+x^2}\right)\,\mathrm{d}x = -\frac{\pi}{16}\ln^{2}\left(2\right) - \frac{11}{192}\,\pi^{3} + 2\Im\left\{% \text{Li}_{3}\left(\frac{1 + \mathrm{i}}{2}\right)\right\}$$
So we are left with only $\int_0^1\frac{\arctan x\ln(1+x^2)}{1+x}dx$ as $\int_0^1\frac{\arctan x\ln x}{1+x}dx$ is already nicely calculated by FDP here. Any idea?
I noticed that if we use $x\to\frac{1-x}{1+x}$ in $\int_0^1\frac{\arctan x\ln(1+x^2)}{1+x}dx$ we will have a nice symmerty but still some annoying integrals appear.
In $I$, I also tried the Fourier series of $\ln(\cos x)$ but I stopped at $\int_0^{\pi/2} \frac{x\cos(2nx)}{\sin x}dx$. I would like to see different approaches if possible.
Thank you.