This answer does the case $\gcd(a,b)=1$ only.
**Main idea:**$\let\v\nu\let\geq\geqslant$ investigate how many times a prime divides $a^n-b^n$.
For $m\in\mathbb N$, let $\v_p(m)$ denote the exponent (multiplicity) of the prime $p$ in the prime factorisation of $m$.
Lemma (Lifting The Exponent) let $a,b\in\mathbb Z$, $p\mid a-b$ prime, $p\nmid a$ and $n\in\mathbb N$.
If $p\nmid n$, then $$\v_p(a^n-b^n)=\v_p(a-b).\tag{1}$$
If $p$ is odd, then $$\v_p(a^n-b^n)=\v_p(a-b)+\v_p(n).\tag{2}$$
If $p=2$ and $4\mid a-b$, then $$\v_2(a^n-b^n)=\v_2(a-b)+\v_2(n).\tag{3}$$
If $p=2$ and $2\mid n$, then $$\v_2(a^n-b^n)=\v_2(a^2-b^2)+\v_2(\tfrac n2).\tag{4}$$
Proof. See here (Lemma 1, Theorem 1, Theorem 2, Theorem 4)
Note that 1. is contained in 2. and 3. except when $p=2$ and $4\nmid a-b$.
4. is an easy consequence of 3. by letting $a\mapsto a^2$, $b\mapsto b^2$ and $n\mapsto\frac n2$.
Let $p$ be a prime divisor of $a-b$. Because $\gcd(a,b)=1$, we have $p\nmid a$. We'll prove that
$$\v_p\left(\gcd\left(\frac{a^n-b^n}{a-b},a-b\right)\right)=\v_p(\gcd(n,a-b)).$$
If $p$ is odd or $p=2$ and $4\mid a-b$, then $\v_p\left(\frac{a^n-b^n}{a-b}\right)=\v_p(n)$ by $(2),(3)$, hence
$$\begin{align*}\v_p\left(\gcd\left(\frac{a^n-b^n}{a-b},a-b\right)\right)&=\min\left(\v_p\left(\frac{a^n-b^n}{a-b}\right),\v_p(a-b)\right)\\
&=\min(\v_p(n),\v_p(a-b))\\
&=\v_p(\gcd(n,a-b)).\end{align*}$$
The only case left is $p=2$ and $4\nmid a-b$.
If $n$ is odd, then by $(1)$ we know that $\frac{a^n-b^n}{a-b}$ is odd too.
If $n$ is even, $(4)$ gives that $\v_p(a^n-b^n)\geq\v_p(a-b)+1$, hence $\frac{a^n-b^n}{a-b}$ is even.
Either way,
$$\v_2\left(\gcd\left(\frac{a^n-b^n}{a-b},a-b\right)\right)=\v_2(\gcd(n,a-b)).$$