Suppose $a,b,c,d$ are positive integers such that
$$
\begin{cases}
(ad - bc){\,|\,}a\\[4pt]
(ad - bc){\,|\,}c
\end{cases}
\qquad
$$
Fix a positive integer $n$.
Let $g=\gcd(an+b,cn+d)$.
Our goal is to show $g=1$.
Let $h=\gcd(a,c)$.
Letting $a_1=a/h$ and $c_1=c/h$, we get
$$
\begin{cases}
a=ha_1\\[4pt]
c=hc_1\\
\end{cases}
\qquad\;\;\;\;\;\;\,
$$
where $a_1,c_1$ are positive integers such that $\gcd(a_1,c_1)=1$.
\begin{align*}
\text{Then}\;\;&
\begin{cases}
(ad - bc){\,|\,}a\\[4pt]
(ad - bc){\,|\,}c
\end{cases}
\qquad\qquad\;\;\;
\\[4pt]
\implies\;&
\begin{cases}
(a_1d - bc_1){\,|\,}a_1\\[4pt]
(a_1d - bc_1){\,|\,}c_1
\end{cases}
\\[4pt]
\implies\;&
|a_1d - bc_1|=1
\\[4pt]
\implies\;&
|ad - bc|=h
\\[4pt]
\end{align*}
Also, from $|a_1d - bc_1|=1$, we get $\gcd(b,d)=1$.
\begin{align*}
\text{Then}\;\;&
\begin{cases}
g{\,|\,}(an+b)\\[4pt]
g{\,|\,}(cn+d)\\
\end{cases}
\\[4pt]
\implies\;&g{\,|\,}\bigl(a(cn+d)-c(an+b)\bigr)\\[4pt]
\implies\;&g{\,|\,}(ad-bc)\\[4pt]
\implies\;&g{\,|\,}h\\[4pt]
\implies\;&g{\,|\,}a\;\;\text{and}\;\;g{\,|\,}c\\[4pt]
\end{align*}
Then from $g{\,|\,}a$ and $g{\,|\,}(an+b)$, we get $g{\,|\,}b$.
Similarly, from $g{\,|\,}c$ and $g{\,|\,}(cn+d)$, we get $g{\,|\,}d$.
But then since $\gcd(b,d)=1$, it follows that $g=1$, as was to be shown.