I am working on trying to solve this problem:
Prove: $\int \sin^n{x} \ dx = -\frac{1}{n} \cos{x} \cdot \sin^{n - 1}{x} + \frac{n - 1}{n} \int \sin^{n - 2}{x} \ dx$
Here are the steps that I follow in the example that I am reading:
$u = \sin^{n - 1}{x}$
$du = (n - 1) \cdot \sin^{n - 2}{x} \cdot \cos{x} \ dx$
$v = -\cos{x}$
$dv = \sin{x} \ dx$
$\int \sin^n{x} \ dx = \sin^{n - 1}{x} \cdot \sin{x} \ dx$
$\int \sin^n{x} \ dx = \underbrace{\sin^{n - 1}{x}}_{u} \cdot \underbrace{-\cos{x}}_{v} - \int \underbrace{-\cos{x}}_{v} \cdot \underbrace{(n - 1) \cdot \sin^{n - 2}{x} \cdot \cos{x} \ dx}_{du}$
$\int \sin^n{x} \ dx = -\cos{x} \cdot \sin^{n - 1}{x} + (n - 1)\int \sin^{n - 2}{x} \cdot \cos^{2}{x} \ dx$
$\int \sin^n{x} \ dx = -\cos{x} \cdot \sin^{n - 1}{x} + (n - 1)\int \sin^{n - 2}{x} \cdot \left(1 - \sin^{2}{x}\right) \ dx$
Here is where I get lost. How did we go from $\int \sin^{n - 2}{x} \cdot \left(1 - \sin^{2}{x}\right) \ dx$ to $\int \sin^{n - 2}{x} \ dx - (n - 1) \int \sin^{n}{x} \ dx$? Even more specifically, where did $\sin^{n}{x}$ come from?
$\int \sin^n{x} \ dx = -\cos{x} \cdot \sin^{n - 1}{x} + (n - 1)\int \sin^{n - 2}{x} \ dx - (n - 1) \int \sin^{n}{x} \ dx$
I get this part.
$n\int \sin^n{x} \ dx = -\cos{x} \cdot \sin^{n - 1}{x} + (n - 1)\int \sin^{n - 2}{x} \ dx$
$\int \sin^n{x} \ dx = -\frac{1}{n} \cos{x} \cdot x \ \sin^{n - 1}{x} + \frac{n - 1}{n} \int \sin^{n - 2}{x} \ dx$
Could someone please explain what I am missing?
Thank you for your time.