given $\displaystyle I_{n}=\int^{1}_{0}x^n\sqrt{1-x^2}dx$, then finding value of $\displaystyle \frac{I_{n}}{I_{n-2}}$
Attempt: put $x=\sin \theta$ and $dx = \cos \theta$
$\displaystyle I_{n} = \int^{\frac{\pi}{2}}_{0}\sin^{n}\theta \cdot \cos^2 \theta d \theta = \int^{\frac{\pi}{2}}_{0}\sin^{n}\theta (1-\sin^2 \theta)d \theta $
could some help me how to solve it, thanks