2

given $\displaystyle I_{n}=\int^{1}_{0}x^n\sqrt{1-x^2}dx$, then finding value of $\displaystyle \frac{I_{n}}{I_{n-2}}$

Attempt: put $x=\sin \theta$ and $dx = \cos \theta$

$\displaystyle I_{n} = \int^{\frac{\pi}{2}}_{0}\sin^{n}\theta \cdot \cos^2 \theta d \theta = \int^{\frac{\pi}{2}}_{0}\sin^{n}\theta (1-\sin^2 \theta)d \theta $

could some help me how to solve it, thanks

Martin R
  • 113,040
DXT
  • 11,241

1 Answers1

3

$I_n=\dfrac12\beta(\dfrac{n+1}{2},\dfrac32)$ so $$I_n=\dfrac12\beta(\dfrac{n+1}{2},\dfrac32)=\dfrac12\beta(\dfrac{n-1}{2},\dfrac32)\dfrac{n-1}{n+2}=\dfrac12\beta(\dfrac{n-3}{2},\dfrac32)\dfrac{n-3}{n}\dfrac{n-1}{n+2}=I_{n-2}\dfrac{n-3}{n}\dfrac{n-1}{n+2}$$

Nosrati
  • 29,995