-1

I tried different methods of integration, but I can not solve this problem.

$$\int \sin^n (x) dx$$

Danny Rorabaugh
  • 551
  • 3
  • 15

1 Answers1

2

Hint: $${\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{({\frac {n-1}{2}}-k)}{\binom {n}{k}}\sin {{\big (}(n-2k)\theta {\big )}}}\quad {\text{where n is odd}}$$ $${\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{({\frac {n}{2}}-k)}{\binom {n}{k}}\cos {{\big (}(n-2k{\big )}\theta )}}\quad {\text{where n is even}}$$

E.H.E
  • 23,280
  • 3
    One might reasonable request a source for this identity, which can be easily obtained applying the binomial theorem to $$\sin^n(\theta)=\left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^n$$ – Mark Viola Oct 14 '16 at 19:53
  • but how to integrate it? – E.H.E Oct 14 '16 at 19:55
  • 1
    Its integral is rather trivial. – Mark Viola Oct 14 '16 at 19:56
  • ok I see. It is more easy than my identity, thanks – E.H.E Oct 14 '16 at 19:59
  • When $n$ is even, how should one interpret the term $(n-1)/2$ in your expression? – Mark Viola Oct 14 '16 at 20:10
  • @Dr.MV you can use the other identity ${\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{({\frac {n}{2}}-k)}{\binom {n}{k}}\cos {{\big (}(n-2k{\big )}\theta )}}$ – E.H.E Oct 14 '16 at 20:15