I tried different methods of integration, but I can not solve this problem.
$$\int \sin^n (x) dx$$
I tried different methods of integration, but I can not solve this problem.
$$\int \sin^n (x) dx$$
Hint: $${\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{({\frac {n-1}{2}}-k)}{\binom {n}{k}}\sin {{\big (}(n-2k)\theta {\big )}}}\quad {\text{where n is odd}}$$ $${\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{({\frac {n}{2}}-k)}{\binom {n}{k}}\cos {{\big (}(n-2k{\big )}\theta )}}\quad {\text{where n is even}}$$