Let $\omega_d$ denote the surface area of the $d$ dimensional unit sphere in $\mathbf{R}^{d+1}$. I want to show that
$$ \frac{\omega_d}{2} = \int_0^{\pi/2} \omega_{d-1} \sin(t)^{d-1}\; dt. $$
My calculations seem to have an error, but I am not sure where. Using Fubini's theorem we can write
$$ \frac{\omega_d}{2} = \int_0^1 \omega_{d-1} (1 - r^2)^{(d-1)/2}\; dr. $$
Now we apply the substitution $r = \cos(t)$, with $dr = \sin(t)\; dt$ so we conclude
$$ \int_0^1 (1 - r^2)^{(d-1)/2}\; dr = \int_0^{\pi/2} (1 - \cos(t)^2)^{(d-1)/2} \sin(t)\; dt = \int_0^{\pi/2} \sin(t)^d\; dt$$
Why do I have a $d$ in the power of $\sin$ instead of $d-1$?