I'm having a difficult time solving this integral. I tried integrating by parts:
$\int\sin^2x\cos4x\,dx$
$u=\sin^2x$, $dv=\cos4x\,dx$
I used the power reducing formula to evaluate $\sin^2x$
$du = 2\sin x\cos x\,dx$, $v=1/4\sin4x$
$uv - \int\ v\,du$
$\dfrac{1}{4}\sin^2x\sin4x - \dfrac{1}{2}\int\sin x\cos x\sin4x\,dx$
After this step, I tried evaluating the integral by using the $\sin a\sin b$ property.
$\dfrac{1}{4}\sin^2x\sin4x + \dfrac{1}{4}\int\cos x(\cos5x-\cos3x)\,dx$