In the following a general expression for
$$
\sum_{n=1}^\infty\frac{\coth(n\pi)}{n^{4K-1}}
$$
with $K\in\mathbb Z_+$ will be derived.
Consider the following function:
$$
f_k(z)=\frac{\cot z\coth z}{z^{k}}.\tag1
$$
The function has the pole of order $k+2$ at $z=0$ and simple poles at the points $z=n\pi$ and $z=i n\pi$, with $n\in\mathbb Z$, $n\ne0$.
Let us integrate the function along a square contour connecting the following points of the complex plane:
$$\gamma_\nu:\;
(-\nu,-\nu)\to(\nu,-\nu)\to(\nu,\nu)\to(-\nu,\nu)\to
$$
with $\nu\in\mathbb R,\nu\not\in\mathbb Z,\nu>0$.
By Cauchy's theorem the exact choice of $\nu\in(n\pi,n\pi+\pi)$ does not matter for the value of the integral. To simplify its estimate for large $n$
let $\nu=\left(n+\frac14\right)\pi$. In this case:
$$
|\cot(x\pm i\nu)\coth(x\pm i\nu)|^2=\frac{1+\cot^2x\coth^2\nu}{\cot^2x+\coth^2\nu}\cdot
\underbrace{\frac{1+\coth^2x\cot^2\nu}{\coth^2x+\cot^2\nu}}_{=1}
=\frac{\tan^2x+\coth^2\nu}{1+\tan^2x\coth^2\nu}\le\coth^2\nu.
$$
Due to the symmetry the same estimate is valid for $|\cot(i x\pm \nu)\coth(i x\pm \nu)|^2$. Therefore:
$$
\lim_{n\to\infty}\oint_{\gamma_{\nu}}f_k(z)dz=0.
$$
Thus by the residue theorem we have:
$$
\operatorname{Res}(f_k,0)+\sum_{n=1}^\infty\left[\operatorname{Res}(f_k,n\pi)+\operatorname{Res}(f_k,-n\pi)+\operatorname{Res}(f_k,in\pi)+\operatorname{Res}(f_k,-in\pi)\right]=0\tag2
$$
The pole at $z=0$ can be calculated as follows. Recall that:
$$
\cot z=\frac1z\sum_{n=0}^\infty\frac{(-1)^nB_{2n}}{(2n)!}(2z)^{2n};\quad
\coth z=\frac1z\sum_{n=0}^\infty\frac{B_{2n}}{(2n)!}(2z)^{2n},
$$
where $B_n$ are Bernoulli numbers.
From this one obtains:
$$
\cot z\coth z=\frac1{z^2}\sum_{n=0}^\infty\frac{A_{n}}{n!}(2z)^{n},\text{ with }
A_{2n+1}=0,\;A_{2n}=\sum_{k=0}^n(-1)^k\binom{2n}{2k}B_{2k}B_{2n-2k}.\tag3
$$
It follows
$$
\operatorname{Res}(f_k,0)=\frac{2^{k+1}A_{k+1}}{(k+1)!}\equiv A^*_{k+1}.\tag4
$$
Next we compute the residues at the simple poles:
$$
\operatorname{Res}(f_k,n\pi)=\lim_{z\to n\pi}(z-n\pi)\frac{\cot z\coth z}{z^{k}}=\lim_{\zeta\to0}\zeta\frac{\cot (\zeta)\coth(\zeta+n\pi)}{(\zeta+n\pi)^{k}}=\frac{\coth(n\pi)}{(n\pi)^{k}},\tag{5a}
$$
and
$$
\operatorname{Res}(f_k,i n\pi)=\lim_{z\to in\pi}(z-in\pi)\frac{\cot z\coth z}{z^{k}}=\lim_{\zeta\to0}\zeta\frac{\cot (\zeta+in\pi)\coth(\zeta)}{(\zeta+i n\pi)^{k}}=\frac{\coth(n\pi)}{i(in\pi)^{k}},\tag{5b}
$$
where we used
$$\begin{align}
&\lim_{x\to0}x\cot x=\lim_{x\to0}x\coth x=1,\\
&\cot(x+n\pi)=\cot(x),\\
&\coth(x+in\pi)=\coth(x),\\
&\cot(i x)=-i\coth(x).
\end{align}
$$
From $(5)$ one obtains:
$$
\operatorname{Res}(f_k,n\pi)+\operatorname{Res}(f_k,-n\pi)+\operatorname{Res}(f_k,in\pi)+\operatorname{Res}(f_k,-in\pi)
=\begin{cases}
4\dfrac{\coth(n\pi)}{(n\pi)^k},&k=-1\text{ mod }4,\\
0,&k\ne -1\text{ mod }4.\\
\end{cases}\tag6
$$
Combining $(2)$, $(4)$ and $(6)$ one draws two conclusions:
$$A_k=0\text{ for } k\ne 0\text{ mod }4.\tag7$$
$$4\sum_{n=1}^\infty\dfrac{\coth(n\pi)}{(n\pi)^{4K-1}}=-A^*_{4K}.\tag8$$
Observe that (7) is non-trivial only for $k=2\text{ mod }4$. No closed-form expression is known for $A_{4K}$ but its calculation using $(3)$ represents no difficulty. The first four values of $A^*_{4K}$ are:
$$
A^*_0=1,\quad A^*_4=-\frac7{45},\quad A^*_8=-\frac{19}{14175},\quad A^*_{12}=-\frac{2906}{212837625}.
$$
Particularly, for $K=2$ one obtains:
$$\sum_{n=1}^\infty\dfrac{\coth(n\pi)}{n^{7}}=-\dfrac{A^*_{8}\pi^7}4
=\dfrac{19\pi^7}{56700}.$$
Using for $n\ne0$ the relation:
$$
B_{2n}=\frac{(-1)^{n+1}(2n)!}{(2\pi)^{2n}}2\zeta(2n),
$$
where $\zeta(z)$ is the Riemann zeta-function, the equation $(8)$ can be rewritten as:
$$
\pi\sum_{n=1}^\infty\dfrac{\coth(n\pi)}{n^{4K-1}}=
\zeta(4K)-\sum_{k=1}^{2K-1}(-1)^k\zeta(2k)\zeta(4K-2k),
$$
in agreement with previous results for $K=2$.