49

Does anyone know the exact proof of this limit result?

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$

Darth Geek
  • 12,296

3 Answers3

83

A short proof:

$\left(1+\frac{x}{n}\right)^n = e^{n\log\left(1+\dfrac{x}{n}\right)}$

Since $\log(1+x) = x + O(x^2)$ when $x \to 0$, we have $n\log(1 + \frac{x}{n}) = x + O(\frac{x^2}{n})$ when $n\to +\infty$

Thomas Andrews
  • 177,126
52

$$e^{\ln{(1 + \frac{x}{n})^n} }=e^{n \ln(1+\frac{x}{n})}$$

$$\lim_{n \to +\infty} (1 + \frac{x}{n})^n =\lim_{n \to +\infty} e^{n \ln(1+\frac{x}{n})} \\ =e^{\lim_{n \to +\infty} n \ln(1+\frac{x}{n})} =e^{\lim_{n \to +\infty}\frac{ \ln(1+\frac{x}{n})}{\frac{1}{n}}}$$

Apply L'Hopital's Rule:

$$=e^{\lim_{n \to +\infty}\frac{(\frac{-x}{n^2})\frac{1}{1+\frac{x}{n}}}{-\frac{1}{n^2}}} =e^{\lim_{n \to +\infty}\frac{x}{1+\frac{x}{n}}} =e^x$$

Therefore, $$(1+\frac{x}{n})^n \to e^x$$

evinda
  • 7,823
  • 2
    First: Is the first result in the fourth row by L'Hopital's rule? Second, isn't a limit missing in the second result of the fourth row? $exp(x/(1+x/n))$ should be $exp{lim[x/(1+x/n)]}$ – Carol Eisen Dec 25 '17 at 17:39
  • 1
    You are correct! I edited it to account for the missing limit. Also, you are correct in that one of the steps is using L'Hopital's Rule. – H. Dewey May 02 '18 at 19:58
  • Should I have permission to apply L' Hospital as it is n tends to infinity not x ,I mean it is kind of discrite case not continuous. – Supriyo Banerjee Apr 24 '19 at 14:53
  • I understand everything except the part $\dfrac{-x}{n^{2}}$. Where does this come from? Isn't the derivative of $\ln(1+\frac{x}{n})=\frac{1}{1+\frac{x}{n}}$ only? – James Warthington Oct 12 '19 at 19:21
  • 2
    you're differentiating with respect to x, not n, my man. The variable in the limit is N not x. – astralwolf Dec 23 '19 at 19:45
  • When applying L'Hopital's Rule, you use quotient rule, yes? – Learning stats by example May 16 '22 at 18:59
34

You can use the binomial series expansion. For example:

$$\left(1+\frac{x}{n}\right)^n =1+ \frac{n}{1!}\left(\frac{x}{n}\right)^1+\frac{n(n-1)}{2!}\left(\frac{x}{n}\right)^2+\frac{n(n-1)(n-2)}{3!}\left(\frac{x}{n}\right)^3+\cdots $$

$$\left(1+\frac{x}{n}\right)^n =1+ \frac{n}{n}x+\frac{n(n-1)}{n^2}\frac{x^2}{2!}+\frac{n(n-1)(n-2)}{n^3}\frac{x^3}{3!} + \cdots$$

As $n \to \infty$ the coefficients in $n$ all tend to $1$. Hence:

$$\lim_{n \to \infty}\left(1+\frac{x}{n}\right)^n = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots $$ You'll recognise this last power series as the Taylor series for $\mathrm{e}^x$.

Fly by Night
  • 32,272