I toke this proof from Limit of $(1+ x/n)^n$ when $n$ tends to infinity and there is a step that I don't understand.
Why can we have the pink equality??
$$e^{\ln{(1 + \frac{x}{n})^n} }=e^{n \ln(1+\frac{x}{n})}$$
$$\lim_{n \to +\infty} (1 + \frac{x}{n})^n=\lim_{n \to +\infty} e^{n \ln(1+\frac{x}{n})} \\ =e^{\lim_{n \to +\infty} n \ln(1+\frac{x}{n})}=e^{\lim_{ \to +\infty}\frac{ \ln(1+\frac{x}{n})}{\frac{1}{n}}} \\ \color{fuchsia}=e^{\lim_{ \to +\infty}\frac{(\frac{-x}{n^2})\frac{1}{1+\frac{x}{n}}}{-\frac{1}{n^2}}}=e^{\frac{x}{1+\frac{x}{n}}}=e^x$$
Therefore, $$(1+\frac{x}{n})^n \to e^x$$