For $n\in \mathbb{N}$ let $X_n$ be geometric with parameter $p_n \in (0,1)$, that means $\mathbf{P}[X_n = k] = p_n(1-p_n)^k$, $k\in\mathbb{N}_0$.
How must the sequence $(p_n)_{n\in\mathbb{N}}$ look like so that $X_n/n\overset{\mathcal{D}}{\longrightarrow} \mathrm{Exp}(\alpha)$ with $\alpha>0$?
Note: "$\overset{\mathcal{D}}{\longrightarrow}$" denotes convergence in distribution.
I'm pretty sure that the condition for the sequence is $p_n = \alpha/n$.
Let $A \in \mathcal{B}([0, \infty))$. We have to prove that the associated image measures \begin{equation*} \mathbf{P}_{X_n/n}[A] = p_n(1-p_n)^k \, \delta_{k/n}(A) = \frac{\alpha}{n} \Bigl(1-\frac{\alpha}{n}\Bigr)^k \delta_{k/n}(A) \end{equation*} converge weakly against the image measure \begin{equation*} \mathbf{P}_{\mathrm{Exp}(\alpha)}[A] = \int_A \alpha e^{-\alpha x} \, dx\,. \end{equation*}
Let $f \in C_b([0, \infty))$, i.e. an arbitrary real valued function on $[0, \infty)$ which is bounded and continuous, then \begin{align*} \int f \, d \mathbf{P}_{X_n/n} = \lim_{n\rightarrow\infty} \sum_{k=0}^{\infty} f\biggl(\frac{k}{n}\biggr) \, \frac{\alpha}{n}\Bigl(1-\frac{\alpha}{n}\Bigr)^{k} = \lim_{n\rightarrow\infty} \sum_{k=0}^{\infty} f\biggl(\frac{k}{n}\biggr) \, \frac{\alpha}{n}\biggl(\Bigl(1-\frac{\alpha}{n}\Bigr)^{n}\biggr)^{\frac{k}{n}} \, . \end{align*} Also using dominated convergence with the majorant $2 \|f\|_\infty \alpha e^{-\alpha x}$ we get: \begin{align*} \int f \, d\mathbf{P}_{\mathrm{Exp}(\alpha)} &= \int f(x)\, \alpha e^{-\alpha x} \, dx \\ &= \int \lim_{m\rightarrow\infty} \sum_{k=0}^{m^2} f\biggl(\frac{k}{m}\biggr) \, \mathbf{1}_{\bigl[\frac{k}{m}, \frac{k+1}{m}\bigr)}(x) \, \alpha e^{-\alpha k/m} \, dx \\ &= \lim_{m\rightarrow\infty} \int \sum_{k=0}^{m^2} f\biggl(\frac{k}{m}\biggr) \, \mathbf{1}_{\bigl[\frac{k}{m}, \frac{k+1}{m}\bigr)}(x) \, \alpha e^{-\alpha k/m} \, dx \\ &= \lim_{m\rightarrow\infty} \sum_{k=0}^{m^2} f\biggl(\frac{k}{m}\biggr) \, \frac{\alpha}{m} e^{-\alpha k/m}\, . \end{align*}
So, obviously it seems that we're very near the solution. But we have to partially take some limits and I don't know how to do that. For example, I can't use the M-test to draw the limit back into the infinite sum. Also, though it seems that I can substitute the $m^2$ by $\infty$ in the last equation, I'm not so sure. And even if possible, I don't know what to do about the limit there, too.
If anybody could help me, please?