I've tried substituting ${\frac{1}{x}}$ as $y$ and then I get $\lim_{y \to \ 0}\ (1)^{\frac{1}{y}}$ and that's infinity?
$$\lim_{x \to \infty}\ (1+ {\frac{1}{x}})^{x}$$
I've tried substituting ${\frac{1}{x}}$ as $y$ and then I get $\lim_{y \to \ 0}\ (1)^{\frac{1}{y}}$ and that's infinity?
$$\lim_{x \to \infty}\ (1+ {\frac{1}{x}})^{x}$$
Hint
$$\text{If }L=\lim_{x\rightarrow a}f(x)^{g(x)}=(\rightarrow1)^{(\rightarrow\infty)}$$ then $$L=e^{\lim_{x\rightarrow a}g(x)(f(x)-1)}$$
$\frac{d}{dx} \log x\mid_{x = 1} = \lim_{h \to 0} \frac{\log(1+h)-\log 1}{h} = \lim_{h \to 0} \log(1+h)^{1/h} = \lim_{h \to \infty} \log (1+\frac{1}{h})^h = $ $\log \lim_{h \to \infty} (1+\frac{1}{h})^h$.
But we know $\frac{d}{dx} \log x\mid_{x=1} = 1$, so it must be that $\lim_{h \to \infty} (1+\frac{1}{h})^h = e$.