7

I've seen the identity $\displaystyle \sum_{i \mathop = 0}^n \binom n i^2 = \binom {2 n} n$ used here recently.

I checked for proofs here http://www.proofwiki.org/wiki/Sum_of_Squares_of_Binomial_Coefficients

I couldn't have figured out the combinatorial proof by myself, and the inductive proof assumes you already know the answer...

So my question is : do you know how to prove directly through computation that $\displaystyle \sum_{i \mathop = 0}^n \binom n i^2 = \binom {2 n} n$ ?

Gabriel Romon
  • 35,428
  • 5
  • 65
  • 157

5 Answers5

16

Consider the identity $(1+x)^{2n}=(1+x)^n\cdot(1+x)^n$. By the binomial theorem we have $\displaystyle(1+x)^n=\sum_{k=0}^n{n\choose k} x^k$, so multiplying out we compute the right hand side as $\displaystyle(1+x)^n\cdot(1+x)^n = \sum_{k=0}^{2n}\left(\sum_{j=0}^k{n\choose j}{n\choose k-j}x^k\right)$. But the LHS is just $\displaystyle(1+x)^{2n} = \sum_{k=0}^{2n}{2n\choose k}x^k$; equating coefficients of $x^n$ we get $\displaystyle{2n\choose n}=\sum_{j=0}^n {n\choose j}{n\choose n-j}$. Finally, using the identity ${n\choose j}={n\choose n-j}$ gives the desired result.

10

lab bhattacharjee has given the proof, but it is worth pointing out that this formula is simply an application of the Vandermonde convolution, which says that

$$\sum_{j=0}^k \binom{n}{j}\binom{m}{k-j} = \binom{n+m}{k}.$$

Setting $n=m=k$ and noting that $\binom{n}{n-j}=\binom{n}{j}$ gives the result.

EDIT: By the way, for a slightly non-standard (but purely technical, as you require) proof of the Vandermonde convolution, let $X_1,\cdots,X_{n+m}$ be independent Bernoulli distributed RV's with parameter $p=1/2$. Then, $S_{n+m}=\sum_{j=0}^{n+m}X_j$ has binomial distribution $P[S_{n+m}=k]=\binom{n+m}{k}(\frac{1}{2})^{n+m}$. Applying the ordinary discrete convolution formula for probability distributions yields

$$(1/2)^{n+m}\binom{n+m}{k}=P[S_{n+m}=k]=\sum_{j=0}^k P[S_n=j]P[S_m=k-j]=(1/2)^{n+m}\sum_{j=0}^k\binom{n}{j}\binom{m}{k-j}.$$

mathse
  • 2,438
  • 12
  • 18
10

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ ${\tt\color{#f00}{\mbox{This method is a "direct calculation" which is very}}}$ ${\tt\color{#f00}{\mbox{ convenient when we don't know the answer and, in addition,}}}$ ${\tt\color{#f00}{\mbox{ we don't have to guess combinations of Newton binomials.}}}$

It's based in the identity:

$$ {m \choose s} =\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{m} \over z^{s + 1}}\,{\dd z \over 2\pi\ic} $$

\begin{align} &\bbox[10px,#ffd]{\sum_{k = 0}^{n}{n \choose k}^{2}} = \sum_{k = 0}^{n}{n \choose k} \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z^{k + 1}}\,{\dd z \over 2\pi\ic} \\[5mm] = &\ \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z} \sum_{k = 0}^{n}{n \choose k}\pars{1 \over z}^{k} \,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z} \pars{1 + {1 \over z}}^{n}\,{\dd z \over 2\pi\ic} =\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{2n} \over z^{n + 1}}\,{\dd z \over 2\pi\ic} \\[5mm] = &\ \bbox[10px,border:1px groove navy]{2n \choose n} \end{align}

Felix Marin
  • 89,464
1

You're after a sum of a hypergeometric term. There are general techniques for finding closed forms or proving that they don't exist. See e.g. the book A = B, or MathWorld's description of Sister Celine's method, Gosper's algorithm, and Zeilberger's algorithm.

Peter Taylor
  • 13,425
-1

Note that we can divide the $2n$ objects in $2$ groups including $n$ elements each.

Then to choose $n$ elements out of $2n$ we can choose $0$ objects in the first group and $n$ in the second, or $1$ in the first and $n-1$ in the second and so on, i.e $$\binom{2n}{n} = \sum_{i = 0}^{2n}\binom{n}{i}\binom{n}{n-i} =\sum_{i = 0}^{2n}{\binom{n}{i}}^2 $$

WLOG
  • 11,436