$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
${\tt\color{#f00}{\mbox{This method is a "direct calculation" which is very}}}$
${\tt\color{#f00}{\mbox{ convenient when we don't know the answer and, in addition,}}}$
${\tt\color{#f00}{\mbox{ we don't have to guess combinations of Newton binomials.}}}$
It's based in the identity:
$$
{m \choose s}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{m} \over z^{s + 1}}\,{\dd z \over 2\pi\ic}
$$
\begin{align}
&\bbox[10px,#ffd]{\sum_{k = 0}^{n}{n \choose k}^{2}} =
\sum_{k = 0}^{n}{n \choose k}
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over
z^{k + 1}}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}
\sum_{k = 0}^{n}{n \choose k}\pars{1 \over z}^{k}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}
\pars{1 + {1 \over z}}^{n}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{2n} \over z^{n + 1}}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\bbox[10px,border:1px groove navy]{2n \choose n}
\end{align}