The question is to prove:$$\sum\limits_{r=0}^n{n\choose r}^2={2n\choose n}$$ using the binomial expansion of $(1+x)^n$ and $(1+x^{-1})^n$.
So firstly: $$(1+x)^n=\sum_{i=0}^n\frac{n!.x^n}{i!.(n-i)!}$$ $$(1+x^{-1})^n=\sum_{i=0}^n\frac{n!.x^{-n}}{i!.(n-i)!}$$ and we can work out that: $$\sum_{r=0}^n\left[\begin{pmatrix}n\\r\end{pmatrix}\right]^2=\sum_{r=0}^n\left(\frac{n!}{r!(n-r)!}\right)^2$$ but I am unsure of where to go from here