PROBLEM: Let p be a prime number. Show that the binomial coefficient $\binom{2p}{p}$ is congruent to $2$ mod p.
POSSIBLE SOLUTION
$\binom{2p}{p}=\frac{(2p)!}{p!(2p-p)!}=\frac{(2p)!}{p!p!}=\frac{2*4*..*2p}{p!p!}=\frac{2(1*2*..*p)}{p!p!}=\frac{2*p!}{p!p!}=\frac{2}{p!} \equiv 2 \mod p$
I am unsure of my last step. Can someone tell me if I am correct or not?