5

Prove that ${2p\choose p}\equiv 2\pmod {p^2}.$

My progress:

Consider any $S={(x,y),~~1\le x\le p,~~1\le y\le 2}.$ Note that $|S|=2p.$

Now consider $A\subseteq S$ such that $|A|=p.$

So there are a total of ${2p}\choose{p}$ possible value of $A.$

Then let $A=\{(a_1,b_1),......,(a_p,b_p)\}.$

Define $$f(A)=\{(a_2,b_2),.............(a_p,b_p),(a_1,b_1)\}$$ . . . $$f^{p-1}(A)=\{(a_p,b_p),\dots ,(a_{p-1},b_{p-1})\}$$

Now, define a new binary relation $R$ such $f^{m}(A)Rf^l(A)$ when $$b_{m+1}=b_{l+1},~~b_{m+2}=b_{l+2},~~\dots$$ Note that this is possible only when $b_i=c$ a constant where $c=1$ or $2.$

For the rest ${{2p}\choose{p}}-2$ sets, the orbit size is $p.$

Hence we get $p\mid{{2p}\choose{p}}-2.$

I want to go with the same essence, but I don't know how to get $p^2.$ Any hints?

Bill Dubuque
  • 272,048
Sunaina Pati
  • 4,115

3 Answers3

7

Vandermonde's Identity says that $$ \binom{2p}{p}=\sum_{k=0}^p\binom{p}{k}\binom{p}{p-k}\tag1 $$ For $k\ne0\pmod{p}$, we have $\left.p\,\middle|\binom{p}{k}\right.$, thus $\left.p^2\middle|\binom{p}{k}\binom{p}{p-k}\right.$ for all $k$ except $0$ and $p$.

$\binom{p}{k}\binom{p}{p-k}=1$ for $k=0$ and $k=p$.

robjohn
  • 345,667
3

$$\binom{2p}p=\frac{2p(2p-1)\cdots(p+1)}{p(p-1)\cdots 1}=2\frac{(p+1)(p+2)\cdots(2p-1)}{1\cdot 2\cdots (p-1)}$$

Now, note that $(p+k)(p-k)\equiv -k^2\pmod{p^2}$ for $1\le k\le p-1$; also $\gcd(k^2,p^2)=1$. Basically, for any $n$ such that $p\not\mid n$, we have $\gcd(n,p^2)=1$ and we can divide num/denom by it.

Hence,

$$\prod_1^{p-1}\frac{p+k}{p-k}\equiv\prod_1^{p-1}\frac{(p+k)(p-k)}{(p-k)^2}\equiv\prod_1^{p-1}\frac{-k^2}{(p-k)^2}\equiv (-1)^{p-1}\pmod{p^2}$$

whence we have $\binom{2p}p\equiv 2(-1)^{p-1}\pmod{p^2}$

For prime $p\gt 2$, $(-1)^{p-1}\equiv 1$ and the claim follows. For $p=2$, we have $-2\equiv 2\pmod{2^2}$, so the claim holds there as well.

Thus, $\binom{2p}p\equiv 2\pmod{p^2}$ for all primes $p$

  • How do you get $\prod_1^{p-1}\frac{-k^2}{(p-k)^2}\equiv (-1)^{p-1}\pmod{p^2}$? – Servaes Aug 12 '21 at 07:27
  • 2
    @Servaes: Index changing. $\prod_1^{p-1}k=\prod_1^{p-1}(p-k)$; note that $$\prod_1^{p-1}\frac{-k^2}{(p-k)^2}=(-1)^{p-1}\frac{1^2\cdot 2^2\cdots (p-2)^2(p-1)^2}{(p-1)^2(p-2)^2\cdots 2^2\cdot 1^2}$$ – Prasun Biswas Aug 12 '21 at 07:31
3

I'm assuming $p$ is prime.

To paraphrase your work so far, you have a $2\times n$ array of points and you're acting by rotating the $n$ columns cyclically. Instead, rotate the $n$ points in each row independently.

That is, let $f$ map $(x,1)$ to $(x+1\text{ mod }p,1)$ while fixing the points $(x,2)$, let $g$ map $(x,2)$ to $(x+1\text{ mod }p,2)$ while fixing the points $(x,1)$, and consider the action of the group $\langle f,g\rangle$ on $\{A\subset S : |A|=p\}$. Then for any $A$ other than $\{(x,1):1\le x\le p\}$ and $\{(x,2):1\le x\le p\}$, the orbit of $A$ has size $p^2$.

(This is closely related to robjohn's answer, but perhaps sticks closer to the spirit of actions and orbits.)

tuna
  • 547