enter image description hereUse the binomial theorem to prove that $(nC0)^2 + (nC1)^2 + (nC2)^2 + ... +(nCn)^2 = 2nCn$ left hand side shall be $ (2^n)^2 $ because $(nC0) + (nC1) + (nC2) + ... +(nCn) = 2^n $ and $(nC0)^2 + (nC1)^2 + (nC2)^2 + ... +(nCn)^2 = [(nC0) + (nC1) + (nC2) + ... +(nCn)]^2$ but if u tried to substitute any number $ (2^n)^2$ is not equal $ 2nCn$ what am I missing ?
I added an image for the question
$\binom{n}{k}$
. – user2661923 Sep 30 '20 at 08:27$\binom{n}{k}$
syntax. – user2661923 Sep 30 '20 at 10:36