Using Taylor Series ,
$$\sin x=x-\frac{x^3}{3!}+O(x^5)\implies \frac{\sin x}x=1-\frac{x^2}{3!}+O(x^4)$$
$$\implies \lim_{x\to0}\left(\frac{\sin x}x\right)^{\frac1{x^2}}=\lim_{x\to0} \left(1-\frac{x^2}{3!}+O(x^4)\right)^{\frac1{x^2}}$$
$$=\left(\lim_{x\to0}\left(1-\frac{x^2}{3!}+O(x^4)\right)^{\frac1{-\frac{x^2}{3!}+O(x^4)}}\right)^{\lim_{x\to0}\frac{-\frac{x^2}{3!}+O(x^4)}{x^2}}$$
Now if we set $\displaystyle -\frac{x^2}{3!}+O(x^4)=-\frac1u,$ the inner limit reduces to $\displaystyle\lim_{u\to\infty}\left(1+\frac1u\right)^u=e$
For the exponent, $\displaystyle\lim_{x\to0}\frac{-\frac{x^2}{3!}+O(x^4)}{x^2}=\lim_{x\to0}\left({-\frac1{3!}+O(x^2)}\right)$ as $x\ne0$ as $x\to0$
$\displaystyle\implies\lim_{x\to0}\frac{x^2}{-\frac{x^2}{3!}+O(x^4)}=-\frac16$
How does that equal 1/x^2 ?
– GinKin Jan 09 '14 at 14:22