If $\lim_{x\to a}f(x)=1$ and $\lim_{x\to a}g(x)=\infty$ then show that $$\lim_{x\to a}\{f(x)\}^{g(x)}=e^{\lim\limits_{x\to a}{g(x)\{f(x)-1\}}}.$$ I started off as:
$$\lim_{x\to a}\{f(x)\}^{g(x)} = e^{\lim\limits_{x\to a}{g(x)\{\ln f(x)\}}}$$ $$=e^{\lim\limits_{x\to a}{\{\ln f(x)\}\over {\frac{1}{g(x)}}}}$$ $$=e^{-\lim\limits_{x\to a}{\frac{f'(x)}{g'(x)}.\frac{\{g(x)\}^2}{f(x)}}}.$$
But this doesn't seem to be going anywhere.
\phantom{blah}produces a blank area of the same size as its argument would take up if typeset. Normally, that's used for horizontal alignment but I used it in your example to give a bit more vertical space. – David Richerby Apr 26 '14 at 12:41\vphantomwould have been a better way but, hey,\phantomworked. – David Richerby Apr 29 '14 at 08:23