I am stuck with the following problem :
Find the value of $$\lim_{x \to 0}\left (\frac {\sin x}{x}\right)^{\frac {1}{x^2}}$$
My try : Let $$p=\lim_{x \to 0} \left(\frac {\sin x}{x}\right)^{\frac {1}{x^2}}\implies \log p=\lim_{x \to 0}{\frac {1}{x^2}}\log\left(\frac {\sin x}{x}\right)$$...After applying l'hospitals rule few times I get
$$\log p= \lim_{x \to 0}\frac{1-\sec^2x}{4x \tan x+2x^2\sec^2x}$$.. we can again apply l'hospitals rule ,but the calculations get bigger and bigger..Is there any other easier way around or I am missing something?