584

I need help with this integral:

$$I=\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right)\ \mathrm dx.$$

The integrand graph looks like this:

$\hspace{1in}$The integrand graph

The approximate numeric value of the integral: $$I\approx8.372211626601275661625747121...$$

Neither Mathematica nor Maple could find a closed form for this integral, and lookups of the approximate numeric value in WolframAlpha and ISC+ did not return plausible closed form candidates either. But I still hope there might be a closed form for it.

I am also interested in cases when only numerator or only denominator is present under the logarithm.

amWhy
  • 209,954
  • 75
    Do you have any reason to believe there is a closed form for that horrid-looking thing? – dfeuer Nov 11 '13 at 17:12
  • 62
    In the meantime, I have been able to manipulate the integral into the following form: $$8 \int_0^{\infty} du \frac{(u^2-1)(u^4-6 u^2+1)}{u^8+4 u^6+70 u^4+4 u^2+1} \log{u}$$ from which I may deduce that there is in fact a closed form (because the roots of the denominator are expressible in closed form, a little messy but not bad). But because there are eight roots, a residue-based approach will be very very messy and almost hopeless without some computer algebra. – Ron Gordon Nov 12 '13 at 00:21
  • 7
  • 23
    @MhenniBenghorbal: Related how? – Ron Gordon Nov 19 '13 at 21:02
  • 1
    @user88377 Why is there a bounty on this? It seems Ron Gordon has clearly provided a complete solution already... Are you looking for different solutions?? – Jeff Faraci Apr 06 '14 at 22:10
  • 54
    Out of curiosity, is there an application for this integral? – linuxfreebird Nov 16 '14 at 00:35
  • 3
    @Integrals People put bounties on the question just to give it to him, other than the OP –  Nov 05 '15 at 01:05
  • 5
    I chanced on Ron Gordon's afterthoughts on Reddit and wouldn't have known of it otherwise: https://old.reddit.com/r/math/comments/1qpus4/master_of_integration/cdfysit/. I don't think it was linked here? It'd be such a shame not to be aware of it! –  Apr 22 '19 at 08:25
  • 3
    Where did you get this problem?.. I am sure who made this problem somehow knows the solution or some background because it doesn't look like a random formula. – SGKw Apr 22 '22 at 05:13
  • 4
    The $\operatorname{arccot}\sqrt{\varphi}$ factor everyone quotes in the answer can also be rewritten as e.g. $\arcsin\frac{1}{\varphi}$. – J.G. Apr 25 '23 at 22:39

14 Answers14

991

I will transform the integral via a substitution, break it up into two pieces and recombine, perform an integration by parts, and perform another substitution to get an integral to which I know a closed form exists. From there, I use a method I know to attack the integral, but in an unusual way because of the 8th degree polynomial in the denominator of the integrand.

First sub $t=(1-x)/(1+x)$, $dt=-2/(1+x)^2 dx$ to get

$$2 \int_0^{\infty} dt \frac{t^{-1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} $$

Now use the symmetry from the map $t \mapsto 1/t$. Break the integral up into two as follows:

\begin{align} & 2 \int_0^{1} dt \frac{t^{-1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} + 2 \int_1^{\infty} dt \frac{t^{-1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} \\ &= 2 \int_0^{1} dt \frac{t^{-1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} + 2 \int_0^{1} dt \frac{t^{1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} \\ &= 2 \int_0^{1} dt \frac{t^{-1/2}}{1-t} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )} \end{align}

Sub $t=u^2$ to get

$$4 \int_0^{1} \frac{du}{1-u^2} \log{\left (\frac{5-2 u^2+u^4}{1-2 u^2 +5 u^4} \right )}$$

Integrate by parts:

$$\left [2 \log{\left (\frac{1+u}{1-u} \right )} \log{\left (\frac{5-2 u^2+u^4}{1-2 u^2 +5 u^4} \right )}\right ]_0^1 \\- 32 \int_0^1 du \frac{\left(u^5-6 u^3+u\right)}{\left(u^4-2 u^2+5\right) \left(5 u^4-2 u^2+1\right)} \log{\left (\frac{1+u}{1-u} \right )}$$

One last sub: $u=(v-1)/(v+1)$ $du=2/(v+1)^2 dv$, and finally get

$$8 \int_0^{\infty} dv \frac{(v^2-1)(v^4-6 v^2+1)}{v^8+4 v^6+70v^4+4 v^2+1} \log{v}$$

With this form, we may finally conclude that a closed form exists and apply the residue theorem to obtain it. To wit, consider the following contour integral:

$$\oint_C dz \frac{8 (z^2-1)(z^4-6 z^2+1)}{z^8+4 z^6+70z^4+4 z^2+1} \log^2{z}$$

where $C$ is a keyhole contour about the positive real axis. This contour integral is equal to (I omit the steps where I show the integral vanishes about the circular arcs)

$$-i 4 \pi \int_0^{\infty} dv \frac{8 (v^2-1)(v^4-6 v^2+1)}{v^8+4 v^6+70v^4+4 v^2+1} \log{v} + 4 \pi^2 \int_0^{\infty} dv \frac{8 (v^2-1)(v^4-6 v^2+1)}{v^8+4 v^6+70v^4+4 v^2+1}$$

It should be noted that the second integral vanishes; this may be easily seen by exploiting the symmetry about $v \mapsto 1/v$.

On the other hand, the contour integral is $i 2 \pi$ times the sum of the residues about the poles of the integrand. In general, this requires us to find the zeroes of the eight degree polynomial, which may not be possible analytically. Here, on the other hand, we have many symmetries to exploit, e.g., if $a$ is a root, then $1/a$ is a root, $-a$ is a root, and $\bar{a}$ is a root. For example, we may deduce that

$$z^8+4 z^6+70z^4+4 z^2+1 = (z^4+4 z^3+10 z^2+4 z+1) (z^4-4 z^3+10 z^2-4 z+1)$$

which exploits the $a \mapsto -a$ symmetry. Now write

$$z^4+4 z^3+10 z^2+4 z+1 = (z-a)(z-\bar{a})\left (z-\frac{1}{a}\right )\left (z-\frac{1}{\bar{a}}\right )$$

Write $a=r e^{i \theta}$ and get the following equations:

$$\left ( r+\frac{1}{r}\right ) \cos{\theta}=-2$$ $$\left (r^2+\frac{1}{r^2}\right) + 4 \cos^2{\theta}=10$$

From these equations, one may deduce that a solution is $r=\phi+\sqrt{\phi}$ and $\cos{\theta}=1/\phi$, where $\phi=(1+\sqrt{5})/2$ is the golden ratio. Thus the poles take the form

$$z_k = \pm \left (\phi\pm\sqrt{\phi}\right) e^{\pm i \arctan{\sqrt{\phi}}}$$

Now we have to find the residues of the integrand at these 8 poles. We can break this task up by computing:

$$\sum_{k=1}^8 \operatorname*{Res}_{z=z_k} \left [\frac{8 (z^2-1)(z^4-6 z^2+1) \log^2{z}}{z^8+4 z^6+70z^4+4 z^2+1}\right ]=\sum_{k=1}^8 \operatorname*{Res}_{z=z_k} \left [\frac{8 (z^2-1)(z^4-6 z^2+1)}{z^8+4 z^6+70z^4+4 z^2+1}\right ] \log^2{z_k}$$

Here things got very messy, but the result is rather unbelievably simple:

$$\operatorname*{Res}_{z=z_k} \left [\frac{8 (z^2-1)(z^4-6 z^2+1)}{z^8+4 z^6+70z^4+4 z^2+1}\right ] = \text{sgn}[\cos{(\arg{z_k})}]$$

EDIT

Actually, this is a very simple computation. Inspired by @sos440, one may express the rational function of $z$ in a very simple form:

$$\frac{8 (z^2-1)(z^4-6 z^2+1)}{z^8+4 z^6+70z^4+4 z^2+1} = -\left [\frac{p'(z)}{p(z)} + \frac{p'(-z)}{p(-z)} \right ]$$

where

$$p(z)=z^4+4 z^3+10 z^2+4 z+1$$

The residue of this function at the poles are then easily seen to be $\pm 1$ according to whether the pole is a zero of $p(z)$ or $p(-z)$.

END EDIT

That is, if the pole has a positive real part, the residue of the fraction is $+1$; if it has a negative real part, the residue is $-1$.

Now consider the log piece. Expanding the square, we get 3 terms:

$$\log^2{|z_k|} - (\arg{z_k})^2 + i 2 \log{|z_k|} \arg{z_k}$$

Summing over the residues, we find that because of the $\pm1$ contributions above, that the first and third terms sum to zero. This leaves the second term. For this, it is crucial that we get the arguments right, as $\arg{z_k} \in [0,2 \pi)$. Thus, we have

$$\begin{align}I= \int_0^{\infty} dv \frac{8 (v^2-1)(v^4-6 v^2+1)}{v^8+4 v^6+70v^4+4 v^2+1} \log{v} &= \frac12 \sum_{k=1}^8 \text{sgn}[\cos{(\arg{z_k})}] (\arg{z_k})^2 \\ &= \frac12 [2 (\arctan{\sqrt{\phi}})^2 + 2 (2 \pi - \arctan{\sqrt{\phi}})^2 \\ &- 2 (\pi - \arctan{\sqrt{\phi}})^2 - 2 (\pi + \arctan{\sqrt{\phi}})^2]\\ &= 2 \pi^2 -4 \pi \arctan{\sqrt{\phi}} \\ &= 4 \pi \, \text{arccot}{\sqrt{\phi}}\\\end{align}$$

Leucippus
  • 26,329
Ron Gordon
  • 138,521
  • 152
    +1. $\text{arccot}(\sqrt{\phi})$-definitely one of the most weirdest closed form solutions to have ever been obtained! –  Dec 02 '13 at 06:31
  • 22
    @ShikariShambu: which makes me wonder if we can generate a list of the oddest closed-form solutions to integrals, sums, products, diff eq'ns, and the like. What makes a closed form "odd"? What makes this one odd? The juxtaposition of the arccotangent and $\phi$? This could lead to...a weird discussion, but a fun one nonetheless. – Ron Gordon Dec 18 '13 at 23:41
  • 16
    I know that $\phi$ has some nice properties, but at the end of the day it's just another algebraic number: $$\phi = \frac{1+\sqrt{5}}{2},$$ and all we've done is taken the arc cotangent of the square root of it and multiplied by $4\pi$. - just wondering why this result would be seen as "odd". It most likely appears because it happens to be a root of some polynomial which has $(1+\sqrt{5})/2$ as one of its roots. – pshmath0 Feb 12 '14 at 18:11
  • 4
    @pbs: what is odd to one person is not to another. Just a matter of taste. In this case, a matter of expectations. Was the presence of $\phi$ or its square root obvious to you when you first approached this problem? The arctan or arccot, depending on how you expressed the result? It was far from obvious to me, or that we'd have such a nice, compact expression for a result. – Ron Gordon Feb 12 '14 at 18:20
  • 3
    @RonGordon True, and no it certainly was not expected! Then again, I don't expect any particular algebraic number to appear in a result until it does appear, so I guess the surprise here is that $\phi$ has some special significance. I like your expectations idea. – pshmath0 Feb 12 '14 at 18:24
  • 11
    @RonGordon When I see things like this, I don't consider it odd so much as a pleasant surprise. Phi is known as a number of beauty for many reasons, and to see it emerge from, to quote our friend dfeuer, "that horrid-looking thing", is quite a pleasant surprise indeed! No tin-foil hats, no cube-root-of-31-conspiracies, just running into an old friend at the grocery =) – corsiKa Mar 13 '14 at 19:28
  • 120
    @corsiKa: $\phi$ alone, sure. But now imagine your meeting your old friend, but dressed in drag with a Kaiser-era military helmet on, spike and all. That's sort of the feeling you get when you see, not regular old $\phi$, but ARCCOT SQRT $\phi$. – Ron Gordon Mar 14 '14 at 17:08
  • 4
    I hope you don't mind @RonGordon sir, I wish to give you +50 rep; the exemplary answer is both enlightening, as well as inspiring. It says I can give you the bounty in 23 hours; I will give the bounty when it's possible. – Panglossian Oporopolist Mar 02 '15 at 09:44
  • Sir, is there any chance that you can explain what you mean by "use the symmetry from the map $t \to 1/t$" ? – Our Jul 20 '18 at 07:16
  • 3
    @onurcanbektas In $\int_1^{\infty} dt \frac{t^{-1/2}}{1-t^2} \log{\left (\frac{5-2 t+t^2}{1-2 t +5 t^2} \right )}$, changing $t$ to $1/t$ in the argument to $\log$ has the effect of inverting numerator and denominator, so the overall $\log$ term simply picks up a minus sign. The integral, therefore, barely changes under the change of variables $t = 1/u$, $dt = -du/u^2$: you get $\int_0^1 du \frac{u^{1/2}}{1-u^2} \log{\left (\frac{5-2 u+u^2}{1-2 u +5 u^2} \right )}$. You can then restore $t$ as a variable of integration and recombine the integrals. – Connor Harris Jul 24 '18 at 13:59
  • I chanced on your afterthoughts on Reddit and wouldn't have known of it otherwise: https://old.reddit.com/r/math/comments/1qpus4/master_of_integration/cdfysit/. Did you link to it here? It'd be such a shame not to be aware of it! –  Apr 22 '19 at 08:25
  • 2
    This is very old, but PLEASE recommend me some study materials to help me become a master of integration like this. – CalebWilliamsUIC Dec 22 '20 at 19:44
355

$\large\hspace{3in}I=4\,\pi\operatorname{arccot}$$\sqrt\phi$

Cleo
  • 21,286
200

NEW ANSWER. I found yet another way of solving this problem. My new solution does not use contour integration, and is based on the following observation: for $|z| \leq 1$,

$$ - \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1+x}{1-x}} \log(1 - zx) \, dz= \pi \sin^{-1} z - \pi \log \left( \tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z^{2}} \right) . $$

As I want to keep both the old answer and the new answer, I posted my new solution to other page. You can check it here.


OLD ANSWER. Okay here is another solution. It is also related to my generalization.

We claim the following proposition:

Proposition. If $0 < r < 1$ and $r < s$, then $$ I(r, s) := \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1+x}{1-x}} \log \left( \frac{1 + 2rsx + (r^{2} + s^{2} - 1)x^{2}}{1 - 2rsx + (r^{2} + s^{2} - 1)x^{2}} \right) \, dx = 4\pi \arcsin r. \tag{1} $$

Assuming this proposition, all that we have to do is to solve the non-linear system of equations

$$ 2rs = 2 \quad \text{and} \quad r^{2} + s^{2} - 1 = 2. $$

The unique solution satisfying the condition of the proposition is $r = \phi - 1$ and $s = \phi$. So by $\text{(1)}$ we have

\begin{align*} \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1+x}{1-x}} \log \left( \frac{1 + 2x + 2x^{2}}{1 - 2x + 2x^{2}} \right) \, dx & = I(\phi-1, \phi) \\ &= 4\pi \arcsin (\phi - 1) = 4\pi \operatorname{arccot} \sqrt{\phi}. \end{align*}

Thus it remains to prove the proposition.


Proof of Proposition. We divide the proof into several steps.

Step 1. (Case reduction by analytic continuation) We first remark that given $r$ and $s$, we always have

$$ \min_{-1 \leq x \leq 1} \{ 1 \pm 2rsx + (r^{2} + s^{2} - 1)x^{2} \} > 0. \tag{2} $$

Indeed, it is not hard to check if we utilize the following equality

$$ 1 \pm 2rsx + (r^{2} + s^{2} - 1)x^{2} = (1 \pm rsx)^{2} - (1 - r^{2})(1 - s^{2}) x^{2}. $$

Then $\text{(2)}$ shows that the integrand of $I(r, s)$ remains holomoprhic under small perturbation of $s$ in $\Bbb{C}$. So it allows us to extend $s \mapsto I(r, s)$ as a holomorphic function on some open set containing the line segment $(r, \infty) \subset \Bbb{C}$. Then by the principle of analytic continuation, it is sufficient to prove that $\text{(1)}$ holds for $r < s < 1$.

Step 2. (Integral representation of $I$) Put $r = \sin \alpha$ and $s = \sin \beta$, where $ 0 < \alpha < \beta < \frac{\pi}{2}$. Then

\begin{align*} I(r, s) &= \int_{-1}^{1} \frac{1+x}{x\sqrt{1-x^{2}}} \log \left( \frac{1 + 2rsx + (r^{2} + s^{2} - 1)x^{2}}{1 - 2rsx + (r^{2} + s^{2} - 1)x^{2}} \right) \, dx \\ &= \int_{0}^{1} \frac{2}{x\sqrt{1-x^{2}}} \log \left( \frac{1 + 2rsx + (r^{2} + s^{2} - 1)x^{2}}{1 - 2rsx + (r^{2} + s^{2} - 1)x^{2}} \right) \, dx \qquad (\because \text{ parity}) \\ &= \int_{1}^{\infty} \frac{2}{\sqrt{x^{2}-1}} \log \left( \frac{x^{2} + 2rsx + (r^{2} + s^{2} - 1)}{x^{2} - 2rsx + (r^{2} + s^{2} - 1)} \right) \, dx \qquad (x \mapsto x^{-1}) \\ &= \int_{0}^{1} \frac{2}{t} \log \left( \frac{\left(t+t^{-1}\right)^{2} + 4rs\left(t+t^{-1}\right) + 4(r^{2} + s^{2} - 1)}{\left(t+t^{-1}\right)^{2} - 4rs\left(t+t^{-1}\right) + 4(r^{2} + s^{2} - 1)} \right) \, dt, \end{align*}

where in the last line we utilized the substitution $x = \frac{1}{2}(t + t^{-1})$. If we introduce the quartic polynomial \begin{align*} p(t) = t^{4} + 4rst^{3} + (4r^{2}+4s^{2}-2)t^{2} + 4rst + 1, \end{align*}

then by the property $p(1/t) = t^{-4}p(t)$, we can simplify

\begin{align*} I(r, s) &= 2 \int_{0}^{1} \frac{\log p(t) - \log p(-t)}{t} \, dt = \int_{0}^{\infty} \frac{\log p(t) - \log p(-t)}{t} \, dt \\ &= - \int_{0}^{\infty} \left( \frac{p'(t)}{p(t)} + \frac{p'(-t)}{p(-t)} \right) \log t \, dt = - \frac{1}{2} \Re \int_{-\infty}^{\infty} \left( \frac{p'(z)}{p(z)} + \frac{p'(-z)}{p(-z)} \right) \log z \, dz, \end{align*}

where we choose the branch cut of $\log$ in such a way that it avoids the upper-half plane

$$\Bbb{H} = \{ z \in \Bbb{C} : \Im z > 0 \}.$$

Step 3. (Residue calculation) Since

$$ f(z) := \left( \frac{p'(z)}{p(z)} + \frac{p'(-z)}{p(-z)} \right) \log z = O\left(\frac{\log z}{z^{2}} \right) \quad \text{as } z \to \infty, $$

by replacing the contour of integration by a semicircle of sufficiently large radius, it follows that

\begin{align*} I(r, s) = - \frac{1}{2} \Re \left\{ 2 \pi i \sum_{z_{0} \in \Bbb{H}} \operatorname{Res}_{z = z_{0}} f(z) \right\} = \pi \Im \sum_{z_{0} \in \Bbb{H}} \operatorname{Res}_{z = z_{0}} f(z). \end{align*}

(It turns out that $f(z)$ has only logarithmic singularity at the origin. So it does not account for the value of $I(r, s)$.) But by a simple calculation, together with the condition $ 0 < \alpha < \beta < \frac{\pi}{2}$, we easily notice that the zeros of $p(z)$ are exactly

$$ e^{\pm i(\alpha + \beta)} \quad \text{and} \quad -e^{\pm i(\alpha - \beta)}. $$

Now let $Z_{+}$ be the set of zeros of $p(z)$ in $\Bbb{H}$ and $Z_{-}$ be the set of zeros of $p(z)$ in $-\Bbb{H}$. Then

$$ Z_{+} = \{ e^{i(\beta+\alpha)}, -e^{-i(\beta - \alpha)} \} \quad \text{and} \quad Z_{-} = \{ e^{-i(\beta+\alpha)}, -e^{i(\beta- \alpha)} \}. $$

This in particular shows that

$$ \frac{p'(z)}{p(z)}\log z = \sum_{z_{0} \in Z_{+}} \frac{\log z}{z - z_{0}} + \text{holomorphic function on } \Bbb{H} $$

and

$$ \frac{p'(-z)}{p(-z)}\log z = -\sum_{z_{0} \in -Z_{-}} \frac{\log z}{z - z_{0}} + \text{holomorphic function on } \Bbb{H}. $$

So it follows that

\begin{align*} I(r, s) &= \pi \Im \left\{ \sum_{z_{0} \in Z_{+}} \log z_{0} - \sum_{z_{0} \in -Z_{-}} \log z_{0} \right\} \\ &= \pi \Im \left\{ \log e^{i(\beta+\alpha)} + \log e^{i(\pi-\beta+\alpha)} - \log e^{i(\pi-\beta-\alpha)} - \log e^{i(\beta-\alpha)} \right\} \\ &= \pi \Im \left\{ i(\beta+\alpha) + i(\pi-\beta+\alpha) - i(\pi-\beta-\alpha) - i(\beta-\alpha) \right\} \\ &= 4\pi \alpha = 4\pi \arcsin r. \end{align*}

This completes the proof.

Sangchul Lee
  • 167,468
  • 12
    Very nice, and it helps me simplify a piece of my proof as well (I think our solutions have more in common than not). One question, though: what about the branch point of the log in the residue calculation? I know it doesn't seem to matter as you do end up with the correct solution, but you may want to say something about avoiding the branch point at the origin and defining a branch of the log (which I think you do anyway with your restrictions on $\alpha$ and $\beta$) in the complex plane. – Ron Gordon Nov 17 '13 at 08:45
  • 5
    @RonGordon, As written in the solution, the branch cut of the log is chosen so that it avoids the upper half plane. So it would be safe if we choose it as the negative y-axis, but I think the standard branch cut $(-\infty, 0)$ would also works. – Sangchul Lee Nov 17 '13 at 15:44
  • 3
    Oh my, there it is. My bad, so sorry. In any case, reading your solution helped me simplify a small part of mine, so thanks. – Ron Gordon Nov 17 '13 at 15:53
47

Our aim is to give an elementary proof of Proposition formula (1) in the answer of @sos440. We first note that $$ \min_{-1\leq x\leq1}\{1\pm2rsx+(r^{2}+s^{2}-1)x^{2}\}>0. $$ Indeed, if $x=\pm1$ then $$ 1\pm2rsx+(r^{2}+s^{2}-1)x^{2}\geq(r-s)^{2}>0, $$ if $x=0$ then $$ 1\pm2rsx+(r^{2}+s^{2}-1)x^{2}=1>0, $$ if $-1<x<1$, $x\neq0$ then the equations \begin{eqnarray*} \frac{\partial}{\partial s}(1\pm2rsx+(r^{2}+s^{2}-1)x^{2}) & = & 0,\\ \frac{\partial}{\partial r}(1\pm2rsx+(r^{2}+s^{2}-1)x^{2}) & = & 0, \end{eqnarray*} give $\pm r=sx$, $\pm s=rx$, which is impossible.

In the second step we show that $I(r,s)$ is independent of $s$. $$ \frac{\partial}{\partial s}I(r,s)=\int_{-1}^{1}\sqrt{\frac{1+x}{1-x}}\cdot\frac{4r(1+(r^{2}-s^{2}-1)x^{2})}{(1-2rsx+(r^{2}+s^{2}-1)x^{2})(1+2rsx+(r^{2}+s^{2}-1)x^{2}}\, dx. $$ Substituting $x:=-x$ and adding them we obtain $$ 2\frac{\partial}{\partial s}I(r,s)=\int_{-1}^{1}\frac{2}{\sqrt{1-x^{2}}}\cdot\frac{4r(1+(r^{2}-s^{2}-1)x^{2})}{(1-2rsx+(r^{2}+s^{2}-1)x^{2})(1+2rsx+(r^{2}+s^{2}-1)x^{2}}\, dx, $$ that is, $$ \frac{\partial}{\partial s}I(r,s)=\int_{-1}^{1}\frac{1}{\sqrt{1-x^{2}}}\cdot\frac{4r(-s^{2}+r^{2}-1)x^{2}+4r}{1+(r^{2}+s^{2}-1)^{2}x^{4}+(2s^{2}-4r^{2}s^{2}+2r^{2}-2)x^{2}}\, dx. $$ Substituting $x:=\sin(t)$ we have $$ \frac{\partial}{\partial s}I(r,s) = \int_{-\pi/2}^{\pi/2}\frac{4r(-s^{2}+r^{2}-1)\sin(t)^{2}+4r}{1+(r^{2}+s^{2}-1)^{2}\sin(t)^{4}+(2s^{2}-4r^{2}s^{2}+2r^{2}-2)\sin(t)^{2}}\, dt $$ $$ =\int_{-\pi/2}^{\pi/2}-\frac{8r((-s^{2}+r^{2}-1)\cos(2t)+s^{2}-r^{2}-1)}{(r^{2}+s^{2}-1)^{2}\cos(2t)^{2}-2(r^{2}-s^{2}-1)(r^{2}+1-s^{2})\cos(2t)+r^{4}+(2-6s^{2})r^{2}+(s^{2}+1)^{2}}\, dt $$ $$ = \int_{-\pi}^{\pi}-\frac{4r((-s^{2}+r^{2}-1)\cos(y)+s^{2}-r^{2}-1)}{(r^{2}+s^{2}-1)^{2}\cos(y)^{2}-2(r^{2}-s^{2}-1)(r^{2}+1-s^{2})\cos(y)+r^{4}+(2-6s^{2})r^{2}+(s^{2}+1)^{2}}\, dy. $$ Introducing the new variable $T:=\tan\frac{y}{2}$ we obtain \begin{eqnarray*} \frac{\partial}{\partial s}I(r,s) & = & \int_{-\infty}^{\infty}-\frac{4r(s^{2}-r^{2})T^{2}-4r}{(r-s)^{2}(r+s)^{2}T^{4}+((2-4s^{2})r^{2}+2s^{2})T^{2}+1}\, dT\\ & = & -\frac{4r(s^{2}-r^{2})}{(r-s)^{2}(r+s)^{2}}\int_{-\infty}^{\infty}\frac{T^{2}+a}{T^{4}+bT^{2}+b^{2}/4+d}\, dT\\ & = & -\frac{4r(-s^{2}+r^{2})}{(r-s)^{2}(r+s)^{2}}\cdot\frac{(2a(b^{2}+4d)+(b^{2}+4d)^{3/2})\pi}{(b^{2}+4d)^{3/2}\sqrt{\sqrt{b^{2}+4d}+b}}, \end{eqnarray*} where $$ a=-\frac{1}{s^{2}-r^{2}}, $$ $$ b=\frac{(2-4s^{2})r^{2}+2s^{2}}{(r-s)^{2}(r+s)^{2}}, $$ $$ b^{2}+4d=\frac{4}{(r-s)^{2}(r+s)^{2}}. $$ It gives $2ab^{2}+8da+(b^{2}+4d)^{3/2}=0$.

Since $\frac{\partial}{\partial s}I(r,s)=0$ we have $$ I(r,s)=I(r,1)=\int_{-1}^{1}\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\log\left(\frac{(1+rx)^{2}}{(1-rx)^{2}}\right)dx. $$ From this $$ \frac{\partial}{\partial r}I(r,1)=\int_{-1}^{1}\sqrt{\frac{1+x}{1-x}}\frac{4}{1-r^{2}x^{2}}\, dx. $$ Similarly as above we get $$ \frac{\partial}{\partial r}I(r,1)=\int_{-1}^{1}\frac{4}{\sqrt{1-x^{2}}(1-r^{2}x^{2})}\, dx=\frac{4\pi}{\sqrt{1-r^{2}}}=4\pi(\arcsin r)'. $$ It implies $$ I(r,1)=4\pi\arcsin r+C. $$ Taking the limit $\lim_{r\to0+}$ we obtain $C=0$, that is, $I(r,s)=4\pi\arcsin r$.

vesszabo
  • 3,481
  • 3
    @sos440 Thanks. It was not a trivial task. How could you discover your general Proposition? – vesszabo Mar 09 '14 at 19:28
  • 1
    I first tried variants of the original integral by changing coefficients. Using inverse symbolic calculators, I found some patterns. Then I tried choose a nice parameters that makes the (conjectured) result look simple. – Sangchul Lee Mar 09 '14 at 20:22
42

For the purposes of alternative methods, it may be of interest to note that the integrand

$$f(x)=\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\log\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)$$ may be rewritten in terms of hyperbolic trigonometric functions. Using $$\tanh^{-1}(z) = \frac{1}{2}\log\left(\frac{1+z}{1-z}\right),$$ and we obtain

$$f(x)=\frac{1}{x}e^{\tanh^{-1}x}\log\left(\frac{1+\frac{2x}{1+2x^2}}{1-\frac{2x}{1+2x^2}}\right) = e^{\tanh^{-1} x}\left(\frac{2\tanh^{-1}\left(\frac{2x}{1+2x^2}\right)}{x}\right).$$

The rational function in the bracket, which we will denote $s(x)$, is symmetric about $x=0$.

The desired integral is

$$I=\int_{-1}^1 f(x)dx = \int_{-1}^1e^{\tanh^{-1}x}s(x)dx,$$

which, by adding the indicated useful definite integral to both side, gives

$$I + \int_{-1}^1 e^{-\tanh^{-1}x}s(x)dx = 2\int_{-1}^1 \frac{s(x)dx}{\sqrt{1-x^2}}.$$

Now using the change of variable $x=-y$ we have $$\int_{-1}^1 e^{-\tanh^{-1} x}s(x)dx = -\int_1^{-1} e^{\tanh y}s(-y)dy = \int_{-1}^1 e^{\tanh y}s(y)dy = I,$$ by the symmetry of $s(x)$. Hence, we finally obtain

$$I = \int_{-1}^1\frac{s(x)dx}{\sqrt{1-x^2}} = 2\int_{-1}^1\frac{1}{x\sqrt{1-x^2}}\tanh^{-1}\left(\frac{2x}{1+2x^2}\right)dx.$$

This integral is symmetric about $x=0$, so we have

$$I=4\int_0^1\frac{1}{x\sqrt{1-x^2}}\tanh^{-1}\left(\frac{2x}{1+2x^2}\right)dx,$$ which can be rewritten $$I=-4\int_0^1\left(\frac{d}{dx}\text{sech}^{-1}x\right)\tanh^{-1}\left(\frac{2x}{1+2x^2}\right)dx.$$

Using integration by parts this results in

$$I=8\int_0^1\frac{\text{sech}^{-1}(x)(1-2x^2)}{1+4x^4}dx.$$


We could also make the change of variable $y=\text{sech}^{-1}x$ to obtain

$$I=8\int_0^\infty\frac{y(\cosh^2(y)-2)\sinh y}{\cosh^4(y)+4}dy= 8\int_0^\infty\frac{y\sinh^3 y}{\cosh^4y+4}dy-8\int_0^\infty\frac{y\sinh y}{\cosh^4 y+4}dy.$$

pshmath0
  • 10,565
26

This answer provides a way to find $I=\displaystyle\int_0^1\dfrac{\ln\left(x^4-2x^2+5\right)-\ln\left(5x^4-2x^2+1\right)}{1-x^2}\ dx$ (which @RonGordon obtained above) with differentiating under the integral sign. A $u$-substitution of $u=\dfrac{1+x^2}{1-x^2}$ yields this.

$$I=\dfrac{1}{2}\displaystyle\int_1^\infty\dfrac{\ln\left(\frac{u^2+2u+2}{u^2-2u+2}\right)}{\sqrt{u^2-1}}\ du.$$ Now integrate by parts with $a=\ln\left(\frac{u^2+2u+2}{u^2-2u+2}\right)$ and $db=\dfrac{du}{\sqrt{u^2-1}}.$ $$I=\left.\ln\left(\dfrac{u^2+2u+2}{u^2-2u+2}\right)\ln(u+\sqrt{u^2-1})\right]^\infty_1+2\displaystyle\int_1^\infty\dfrac{u^2-2}{u^4+4}\ln\left(u+\sqrt{u^2-1}\right)\ du$$ The first term is equal to $0$, so we are left with this. $$I=2\displaystyle\int_1^\infty\dfrac{u^2-2}{u^4+4}\ln\left(u+\sqrt{u^2-1}\right)\ du$$ We now begin the step of differentiating under the integral. Consider the following integral: $$f(a)=a\displaystyle\int_1^\infty\dfrac{x^2-a^2}{x^4+a^4}\ln\left(x+\sqrt{x^2-1}\right)\ dx$$ Note that trivially, $f(0)=0.$ A quick $u=\dfrac{x}{a}$ yields this. $$f(a)=\displaystyle\int_{\frac{1}{a}}^\infty\dfrac{u^2-1}{u^4+1}\ln\left(au+\sqrt{(au)^2-1}\right)\ du$$ Differentiating with respect to $a$ and using the Chain Rule, we get this. $$f'(a)=-1\times\dfrac{-1}{a^2}\times\dfrac{\left(\frac{1}{a}\right)^2-1}{\left(\frac{1}{a}\right)^4+1}\ln\left(a\left(\dfrac{1}{a}\right)+\sqrt{\left(a\left(\dfrac{1}{a}\right)\right)^2-1}\right)+\displaystyle\int_{\frac{1}{a}}^\infty\dfrac{x^2-1}{x^4+1}\times\dfrac{x}{\sqrt{(ax)^2-1}}\ dx$$ Luckily, the first term cancels, so we are left with this. $$f'(a)=\displaystyle\int_{\frac{1}{a}}^\infty\dfrac{x^2-1}{x^4+1}\times\dfrac{x}{\sqrt{(ax)^2-1}}\ dx$$ A $u$-substitution of $u=\sqrt{(ax)^2-1}$ yields this. $$f'(a)=\displaystyle\int_0^\infty\dfrac{u^2+1-a^2}{(u^2+1)^2+a^4}\ du$$ Consider the integral with $u\mapsto\dfrac{\sqrt{a^4+1}}{u}$ $$f'(a)=\dfrac{1}{\sqrt{a^4+1}}\displaystyle\int_0^\infty\dfrac{(1-a^2)u^2+(a^4+1)}{u^4+2u^2+(a^2+1)}\ du$$ If we add these two versions of the integral and divided the numerator and denominator of the integrand by $u^2$, we get the following. $$f'(a)=\dfrac{(1-a^2)+\sqrt{a^4+1}}{2\sqrt{a^4+1}}\times\displaystyle\int_0^\infty\dfrac{1+\frac{\sqrt{a^4+1}}{u^2}}{\left(u-\frac{\sqrt{a^4+1}}{u}\right)^2+2\left(1+\sqrt{a^4+1}\right)}\ du$$ We can finally perform a very nice substitution of $w=u-\dfrac{\sqrt{a^4+1}}{u}$ to solve this integral. $$f'(a)=\dfrac{(1-a^2)+\sqrt{a^4+1}}{2\sqrt{a^4+1}}\times\displaystyle\int_{-\infty}^\infty\dfrac{dw}{w^2+2\left(1+\sqrt{a^4+1}\right)}\ dw$$ Thus, we can finally say that $f'(a)=\dfrac{(1-a^2)+\sqrt{a^4+1}}{2\sqrt{a^4+1}}\times\dfrac{\pi}{\sqrt{2\left(1+\sqrt{a^4+1}\right)}}.$ After a bit of considerable algebra, we can simply that to obtain this. $$f'(a)=\dfrac{\pi}{2}\sqrt{\dfrac{\sqrt{a^4+1}-a^2}{a^4+1}}$$ Integrating, we can now say this about the value of $f(a).$ $$f(a)=\dfrac{\pi}{2}\displaystyle\int_0^a\sqrt{\dfrac{\sqrt{x^4+1}-x^2}{x^4+1}}\ dx$$ Only one $u$-substitution of $u=\sqrt{x^4+1}-x^2$ is required here to obtain this. $$f(a)=\dfrac{\pi}{2\sqrt{2}}\displaystyle\int_{\sqrt{a^4+1}-a^2}^1\dfrac{du}{\sqrt{1-u^2}}$$ This, of course, is equal to $\dfrac{\pi\arccos\left(\sqrt{a^4+1}-a^2\right)}{2\sqrt{2}}.$

We will now manipulate this result to a function with $\arctan$ in it.

$f(a)=\dfrac{\pi\arccos\left(\sqrt{a^4+1}-a^2\right)}{2\sqrt{2}}=\dfrac{\pi}{\sqrt{2}}\arctan\left(\sqrt{\dfrac{\sqrt{a^4+1}-1}{a^2}}\right)$

Our desired value for our original integral is $\sqrt{2}f\left(\sqrt{2}\right).$

$$\boxed{\displaystyle\int_0^1\dfrac{\ln\left(x^4-2x^2+5\right)-\ln\left(5x^4-2x^2+1\right)}{1-x^2}\ dx=\pi\arctan\left(\sqrt{\dfrac{\sqrt{5}-1}{2}}\right)=\pi\text{arccot}\sqrt{\phi}}$$

So the final answer to the original problem is $4\pi\text{arccot}\sqrt{\phi}.$

Arcturus
  • 829
21

Noteworthy, RIES (http://mrob.com/pub/ries/index.html) finds closed form from numerical value in the form of an equation: $$ \cos{\left( \frac{x}{\pi} \right)}+1=\frac{2}{\phi^6}. $$

Simplifying above, we get another form of the result: $$ I = \pi \arccos{(17-8\sqrt{5})}. $$

  • 3
    I used RIES also but made some simple adjustments to get a simpler form of the answer $I=8\pi \arcsin(\phi-1)$. – Somos Jun 25 '17 at 19:09
  • @Somos Your answer (about $16.74$) seems to be double that of Andrzej Odrzywolek and of Arcturus (about $8.37$) – Henry Sep 17 '20 at 01:19
  • @Henry Oops! Thanks. The correct answer is $,I=4\pi \arcsin(\phi-1)$. Somehow I doubled it. – Somos Sep 17 '20 at 02:19
18

Figured I would contribute and add a self-contained real analytic method:

I will use the following representations that are fairly straight-forward to prove: $$2\int_{0}^{\infty}\frac{\cos(x)-\cos(t \, x)}{x}\left(e^{-x\sqrt{-a-bi}}+e^{-x\sqrt{-a+bi}}\right) \, dx=\ln \left((t^2 -a)^2 + b^2\right)-\ln \left((1-a)^2+b^2\right)$$ $$\int_{0}^{\infty}\frac{\sin(x)}{x}\left(e^{-x\sqrt{-a-bi}}+e^{-x\sqrt{-a+bi}}\right) \, dx=\arctan\left(\frac{1}{\sqrt{-a-bi}}\right)+\arctan\left(\frac{1}{\sqrt{-a+bi}}\right)$$ $$\int_{0}^{\infty}\frac{\cos(t)-\cos(t \, x)}{x^2-1} \, dx=\frac{\pi}{2}\sin(t),\> \text{for} \, \> t\geq 0$$

Now we can begin evaluating $I$: $$I=\int_{-1}^{1}\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right) \, dx$$

Enforce the substitution $\sqrt{\frac{1+x}{1-x}} = u$: $$\implies I = \int_{0}^{\infty}\frac{4u^2}{u^4-1}\ln\left(\frac{5u^4-2u^2+1}{u^4-2u^2+5}\right)\, du \stackrel{u \, \mapsto \frac{1}{u}}{=}\int_{0}^{\infty}\frac{4}{u^4-1}\ln\left(\frac{5u^4-2u^2+1}{u^4-2u^2+5}\right) \, du$$

From adding the two, we can deduce: $$I = \int_{0}^{\infty}\frac{2}{u^2-1}\ln\left(\frac{5u^4-2u^2+1}{u^4-2u^2+5}\right) \, du$$

Since $$\ln\left(5 u^4-2 u^2+1\right)-\ln(4)=\ln\left(\left(u^2-\frac{1}{5}\right)^2+\frac{4}{25}\right)-\ln\left(\frac{4}{5}\right)$$ $$\ln(u^4-2 u^2+5)-\ln(4)=\ln((u^2-1)^2+4)-\ln(4)$$

We can write $$A=\int_{0}^{\infty}\frac{2}{u^2-1}\left(\ln\left(\left(u^2-\frac{1}{5}\right)^2+\frac{4}{25}\right)-\ln\left(\frac{4}{5}\right)\right)\,du\\ B=\int_{0}^{\infty}\frac{2}{u^2-1}\left(\ln((u^2-1)^2+4)-\ln(4)\right)\, du$$ such that $I = A-B$

Now from the starting representations we deduce: $$\begin{align} \implies A &= \int_{0}^{\infty}\frac{4}{u^2-1}\int_{0}^{\infty}\frac{\cos(t)-\cos(u \, t)}{t}\left(e^{-t\sqrt{(-1-2i)/5}}+e^{-t\sqrt{(-1+2i)/5}}\right)\,dt\,du \\ &= 2\pi\int_{0}^{\infty}\frac{\sin(t)}{t}\left(e^{-t\sqrt{(-1-2i)/5}}+e^{-t\sqrt{(-1+2i)/5}}\right)\, dt \\ &= 2\pi\arctan\left(\frac{\sqrt{5}}{\sqrt{-1-2i}}\right)+2\pi\arctan\left(\frac{\sqrt{5}}{\sqrt{-1+2i}}\right) \\ &= \Re\left(4\pi \arctan\left(\frac{\sqrt{5}}{\sqrt{-1-2i}}\right)\right)\end{align}$$

Similarly, one finds $$B=\Re\left(4\pi\arctan\left(\frac{1}{\sqrt{-1-2i}}\right)\right)$$

By using the identity: $$\arctan (x)+\arctan (y)=\arctan \left(\frac{x+y}{1-x y}\right)$$

One deduces $$\boxed{I=4\pi \operatorname{arccot} \left(\sqrt{\phi}\right)}$$

KStarGamer
  • 5,089
  • 1
  • 18
  • 50
13

This is not really an answer, but grossly too long for an comment. I didn't know how to simplify it beyond the final solution.

$$I=\int_{-1}^1 \frac{1}{x}\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\text{d}{x}$$

Begin with the substitution of $x=-\cos2a$ $$I=\int_{-1}^1 \frac{1}{-\cos2a}\sqrt{\frac{1-\cos2a}{1+\cos2a}}\ln\left(\frac{2\cos^2 2a-2\cos 2a+1}{2\cos^2 2a-2\cos2a+1}\right)\text{d}{x}$$

By the tangent and cos double angle properties

$$I=\int_{-1}^1 -\sec2a|\tan a|\ln\left(\frac{-2\cos^22a+\cos 4a+2}{2\cos2a+\cos4a+2}\right)\text{d}{a}$$

Were just getting started. Now replace $a=\frac{1}{2}\text{gd}(b)$ where $\text{gd}$ is the Gudermannian function.

$$I=\int_{-1}^1 -\sec(\text{gd}(b))|\tan(\text{gd}(\frac{b}{2}))|\ln\left(\frac{-2\cos^2(\text{gd}(b))+\cos (2\text{gd}(b))+2}{2\cos^2(\text{gd}(b))+\cos (2\text{gd}(b))+2}\right)\text{d}{a}$$

Hehe. Now we get to simplify a bit. This is under the definition of Gudermannian properties.

$$I=\int_{-1}^1 -\text{cosh}\space b|\sinh\frac{b}{2}|\ln\left(\frac{-2\text{sech}^2 b+(\text{sech}^2b+\tanh^2b)+2}{2\text{sech}^2 b+(\text{sech}^2b+\tanh^2b)+2}\right)$$

Now, use properties of $\tanh$ and $\text{sech} $ to simplify even further

$$I=\int_{-1}^1 -\text{cosh}\space b|\sinh\frac{b}{2}|\ln\left(\frac{(1-\text{sech}^2 b)+2}{(1+\text{sech}^2 b)+2}\right)$$

Our goal is to create an $\text{arctanh}$ function, but that will obviously take some serious effort. Factor out a $3$ to generate that $1$ needed even if it makes an ugly factoring.

$$I=\int_{-1}^1 -\text{cosh}\space b|\sinh\frac{b}{2}|\ln\left(\frac{3(1-\frac{\text{sech}^2 b}{3})}{3(1+\frac{\text{sech}^2 b}{3})}\right)$$

And now cut out all of the 3's. After this cut, use a property of $\ln$'s to reciprocate the argument of $\ln$. And multiply 2 and 1/2

$$I=\int_{-1}^1 2\text{cosh}\space b|\sinh\frac{b}{2}|\frac{1}{2}\ln\left(\frac{(1+\frac{\text{sech}^2 b}{3})}{(1-\frac{\text{sech}^2 b}{3})}\right)$$

And what do you know! You're there! Use a property of $\ln$ and $\text{arctanh}$ to generate a much CLEANER form (also by throwing the 2 in front).

$$I=2\int_{-1}^1 \text{cosh}\space b|\sinh\frac{b}{2}|\text{arctanh}(\frac{\text{sech}^2b}{3})$$

This function is even, and we can know that because all parts of what is above, $\cosh b,|\sinh b|, $ etc. all even. So we can do the following.

$$I=4\int_{0}^1 \text{cosh}\space b|\sinh\frac{b}{2}|\text{arctanh}(\frac{\text{sech}^2b}{3})$$

This is just an idea, and like I said not a real solution. I have no idea where to continue beyond this, but I thought it may help to come up with a new idea to solve.

  • 2
    After further inspection, I messed up my work here. I will leave this post here howver becUse the purpose of the post still holds (ideas to solve) –  Nov 22 '15 at 17:42
  • Don't you need to change the limits after you make the first change of variable $x = -\cos 2a$? – r9m Dec 02 '15 at 16:59
  • @user23055 not really. There are lots of mistakes and only consists of only substitution –  Apr 02 '16 at 04:48
13

Well, 9 years later, this answer is going to be another approch via a contour integral. Denote $$I = \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1+x}{1-x}} \ln \left(\frac{2x^2+2x+1}{2x^2-2x+1}\right) \,\mathrm{d}x \in \mathbb{R}$$ our integral of interest.

Complex function

Let $$f(z) = \frac{1}{z} \sqrt{\frac{z+1}{z-1}}\left(\ln \left({\frac{2z+1+i}{2z-1+i}}\right) + \frac{\pi i}{2}\right),$$ where $\sqrt{w}$ and $\ln w$ are chosen such that they have a branch cut at the negative real axis (the so-called principal branches) in $w$-plane, that is $\arg w \in \left(-\pi,\pi\right]$. We denote $$h(z) = \frac{1}{z} \sqrt{\frac{z+1}{z-1}}, \qquad g(z) = \ln \left({\frac{2z+1+i}{2z-1+i}}\right) + \frac{\pi i}{2}$$ so $f(z) = h(z)g(z)$. To find the branch cuts of $f(z)$, we need to find which points on the $z$-plane are mapped onto the negative real axis in $w$. That is to solve

$$ \boxed{\sqrt{w}}_{B.C.}:\quad w=\frac{z+1}{z-1} = -t,\qquad t>0; \qquad\qquad \boxed{\ln w}_{B.C.}:\quad w=\frac{2z+1+i}{2z-1+i} = -t, \qquad t>0.$$ After simple manipulations, we arrive at $$ \boxed{h(z)}_{B.C.}:\quad z=\frac{t-1}{t+1} \in (-1,1); \qquad\qquad \boxed{g(z)}_{B.C.}:\quad z = \frac{t-1}{2(t+1)} - \frac{i}{2} \in \left(\frac{-1-i}{2},\frac{1-i}{2}\right).$$ where $(z_1,z_2)$ means here a line segment from $z_1$ to $z_2$ for any in general complex $z_1,z_2$.

Poles and residues

At $z\to \infty$, we have $f(z) = \frac{\pi i}{2z} + O(1/z^2)$, a simple pole. So $$\operatorname{Res}_\infty f(z) = - \lim_{z\to\infty} z f(z) = - \frac{\pi i}{2}.$$ Note that there is no pole at $z=0$ since $$\frac{2z+1+i}{2z-1+i} = -i-2iz+O(z^2),$$ so $$g(z) = -\frac{\pi i}{2}+2z + \frac{\pi i}{2} +O(z^2) = 2z +O(z^2),$$ which cancels the simple pole of $h(z)$ at $0 \pm 0i$.

Branch jumps

  • $(-1,1):$ Let $t \in (-1,1)$. Since the complex square root function changes sign on the branch discontinuity, $h(t+i0) = -h(t-i0)$ and so $f(t+i0) = -f(t-i0)$.
  • $\left(\frac{-1-i}{2},\frac{1-i}{2}\right):$ Let $t \in (-1/2,1/2)$. For $z = t - 1/2 i \pm i0,$ $$ \frac{2z+1+i}{2z-1+i} \bigg{|}_{t - i/2 \pm i0} = -r + \left(\frac{2z+1+i}{2z-1+i}\right)' \bigg{|}_{t - i/2} (\pm i0) = - r - \frac{4}{(1-2t)^2} (\pm i 0) = -r \mp i0.$$ where $-r$ is some negative number (branch cut mapped on negative numbers $-r$). Hence, $$g(t+i0) - g(t-i0) = \ln(-r-i0)-\ln(-r+i0) = -2\pi i.$$

Residue theorem

We integrate $f(z)$ along contour $C$ defined in Figure below. The contour is also split as $C = C_1 + \ldots + C_6$.

Contour of integration

According to the Residue theorem, $$\oint_C f(z) \, \mathrm{d}x = - 2\pi i \operatorname{Res}_\infty f(z) = -\pi^2.$$

On the other hand, $$ \oint_C f(z) \, \mathrm{d}z = \sum_{k=1}^6 \int_{C_k} f(z) \, \mathrm{d}z. \tag{1}$$

Parametrisation

For $C_1, \ldots C_6$, we have the following parametrisation:

  • $ \circleddash C_1: z = t + i0, t\in (-1,1), dz = dt$; Since $h(z)$ has a branch cut here, $f(t+i0) = h(t+i0)g(t)$. To obtain $h(t+i0)$, we first compute $$ \frac{z+1}{z-1}\bigg{|}_{t+i0} = \frac{z+1}{z-1}\bigg{|}_{t}+\left(\frac{z+1}{z-1}\right)'\bigg{|}_{t} i0 = -\frac{1+t}{1-t} - \frac{2}{(1-t)^2}i0 = -\frac{1+t}{1-t}-i0,$$ so $h(t+i0) = -\frac{i}{t} \sqrt{\frac{1+t}{1-t}}$. For $g(z)$, we can write $$ g(t) = \ln\left|\frac{2t+1+i}{2t-1+i}\right| + \arg\left(\frac{2t+1+i}{2t-1+i}\right) + \frac{\pi i}{2} = \frac12 \ln\left(\frac{2t^2+2t+1}{2t^2-2t+1}\right) + i \xi(t)$$ for some real function $\xi(t)$ which vanishes at $t=0$. Although we don't need this function, we express it anyway for completeness: Since $-\pi < \arg(2t+1+i)-\arg (2t-1+i) < \pi$, we have $\arg\left(\frac{2t+1+i}{2t-1+i}\right) = \arg(2t+1+i)-\arg (2t-1+i)$ and so $$ \xi(t) = \arctan\left(2t-1\right)-\arctan\left(2t+1\right) + \frac{\pi}{2}.$$ Overall, $$ f(t+i0) = - \frac{i}{t}\sqrt{\frac{1+t}{1-t}} \left( \frac12 \ln\left(\frac{2t^2+2t+1}{2t^2-2t+1}\right) + i \xi(t) \right) .$$ Hence $$ \int_{C_1} f(z) \, \mathrm{d}z = -\int_{\circleddash C_1} f(z) \, \mathrm{d}z = - \int_{-1}^{1} f(t+i0) \, \mathrm{d}t = \frac{i}{2}I - I_0,$$ where we denote $$I_0 = \int_{-1}^{1} \frac{\xi(t)}{t}\sqrt{\frac{1+t}{1-t}} \, \mathrm{d}t \in \mathbb{R}.$$
  • $C_2$: Using knowledge of branchjumps, $$\int_{C_2} f(z) \, \mathrm{d}z = -\int_{\circleddash C_2} f(z) \, \mathrm{d}z = -\int_{C_1} (-f(z)) \, \mathrm{d}z = \frac{i}{2}I - I_0.$$
  • $C_3 = \circleddash C_6$, so $$\int_{C_3} f(z) \, \mathrm{d}z + \int_{C_6} f(z) \, \mathrm{d}z = \int_{C_3} f(z) \, \mathrm{d}z - \int_{\circleddash C_6} f(z) \, \mathrm{d}z = 0$$
  • $C_4$: Using knowledge of branchjumps, $$\int_{C_4} f(z) \, \mathrm{d}z = -\int_{\circleddash C_4} h(z)g(z) \, \mathrm{d}z = -\int_{C_5} h(z)(g(z)-2\pi i) \, \mathrm{d}z = -\int_{C_5} f(z) \, \mathrm{d}z + 2\pi i\int_{C_5} h(z) \, \mathrm{d}z.$$

Comparison & Antiderivative

Comparing the terms, that is by using $(1)$, we get $$-\pi^2 = iI - 2I_0 +2\pi i \int_{C_5} h(z) \, \mathrm{d}z.\tag{2}$$

We now solve the remaining integral $\int_{C_5} h(z) \, \mathrm{d}z$. For brevity, we denote $a = \frac{-1-i}{2}, b =\frac{1-i}{2}$, so $C_5 = (a,b)$. Notice $h(z)$ is now holomorphic in the vicinity of $C_5$. If we find its antiderivative $H(z)$ also holomorphic there, then

$$ \int_{C_5} h(z) \, \mathrm{d}z = H(b) - H(a).\tag{3}$$

This task is rather simple. First, we start by integrating $h(z)$ as if it was a real function. For $x>1$, we have by substitution $(x-1)/(x+1)=u^2$,

$$\int h(x) \, \mathrm{d}x = \int \frac{1}{x}\sqrt{\frac{x+1}{x-1}} \, \mathrm{d}x = \int \frac{4u^2}{u^4-1} \, \mathrm{d}u = 2\operatorname{argcoth}\left(\sqrt{\frac{x+1}{x-1}}\right) + 2\operatorname{arccot}\left(\sqrt{\frac{x+1}{x-1}}\right).$$

Hence, a suitable antiderivative in the complex plane is the following: $$H(z) = \ln \left(\frac{\sqrt{\frac{z+1}{z-1}}+1}{\sqrt{\frac{z+1}{z-1}}-1}\right) - i\ln \left(\frac{\sqrt{\frac{z+1}{z-1}}+i}{\sqrt{\frac{z+1}{z-1}}-i}\right).$$

We know the branch of $H(z)$ due to $\nu = \sqrt{\frac{z+1}{z-1}}$ is $z \in (-1,1)$. Assuming the principal branches, we now check where are the other possible branches of $H(z)$ due to $\ln$'s.

$$ \boxed{\ln{w}}_{B.C.}:\quad w=\frac{\nu+1}{\nu-1} = -t,\qquad t>0; \qquad\qquad \boxed{\ln w}_{B.C.}:\quad w=\frac{\nu+i}{\nu-i} = -t, \qquad t>0.$$ $$ \boxed{w(\nu)}_{B.C.}:\quad \nu = \frac{t-1}{t+1} = \in (-1,1) ; \qquad\qquad \boxed{w(\nu)}_{B.C.}:\quad \nu=i\frac{t-1}{t+1} \in (-i,i).$$ $$ \boxed{H(z)}_{B.C.}:\quad z = \frac{\nu^2+1}{\nu^2-1} \in (-\infty,0).$$

Hence, the B.C. of $H(z)$ lies at $(-\infty,1)$, safely away from $C_5$. Substituting $(3)$ into $(2)$, we get the value of $I$. And as a bonus, also $I_0$. For $I$,

$$ I = 2\pi\operatorname{Re} (H(a) - H(b)).\tag{4}$$

Substituing $a$ and $b$ into $\frac{z+1}{z-1}$, we get

$$\frac{a+1}{a-1} = -\frac{1}{5} + \frac{2i}{5} = \frac{1}{q^2}e^{2\alpha i}, \qquad \frac{b+1}{b-1}=-1+2i = q^2 e^{2\alpha i}$$ with $q = 5^{1/4}>1$ and $\alpha = \frac{\pi}{2} - \frac{1}{2}\arctan 2$. Note that $\pi/4 < \alpha < \pi/2$, so

$$\sqrt{\frac{a+1}{a-1}} = \frac{1}{q} e^{\alpha i}, \qquad \sqrt{\frac{b+1}{b-1}} = q e^{\alpha i}.$$

In the case of $b$, substituing into $\nu = \sqrt{\frac{z+1}{z-1}}$ and after simple manipulations, $$\frac{\nu + 1}{\nu - 1} \bigg{|}_{\nu = q e^{\alpha i}} = \frac{q^2-2 i q \sin\alpha-1}{q^2-2 q \cos\alpha+1}, \qquad \frac{\nu + i}{\nu - i} \bigg{|}_{\nu = q e^{\alpha i}} \frac{q^2+2 i q \cos\alpha-1}{q^2-2 q \sin\alpha+1}.$$

Hence, since the denominators are real, $$H(b) = \ln\left(q^2-2iq\sin\alpha-1\right)-\ln\left(q^2-2q\cos\alpha+1\right)-i\ln\left(q^2+2iq\cos\alpha-1\right)+i \ln\left(q^2-2q\sin\alpha+1\right),$$

expanding the logarithms into real and imaginary part, $$H(b) = \frac{1}{2} \ln\left(q^4-2 q^2 \cos (2 \alpha )+1\right)+i \arg \left(q^2-2 i q\sin\alpha-1\right)-\ln\left(q^2-2q\cos\alpha+1\right)-\frac{1}{2} i \ln\left(1+2q^2\cos (2 \alpha )+q^4\right)+\arg \left(q^2+2iq\cos\alpha-1\right)+i\ln\left(q^2-2q \sin\alpha+1\right)$$

Since we are interested only in real part (just $I$), $$\operatorname{Re} H(b) = \frac{1}{2} \ln\left(q^4-2 q^2 \cos (2 \alpha )+1\right)-\ln\left(q^2-2q\cos\alpha+1\right)+\arg \left(q^2+2iq\cos\alpha-1\right)$$

Similarly for $a$ (change $q$ to $1/q$). \begin{align*} \operatorname{Re} H(a) & = \frac{1}{2} \ln\left(\frac{1}{q^4}\!-\!\frac{2}{q^2} \cos (2 \alpha)\!+\!1\right)-\ln\left(\frac{1}{q^2}\!-\!\frac{2}{q}\cos\alpha\!+\!1\right)+\arg \left(\frac{1}{q^2}\!+\!\frac{2i}{q}\cos\alpha\!-\!1\right)\\ &= \frac{1}{2} \ln\left(q^4\!-\!2 q^2 \cos (2 \alpha )\!+\!1\right)-\ln\left(q^2\!-\!2q\cos\alpha\!+\!1\right)+\pi - \arg \left(q^2\!+\!2iq\cos\alpha\!-\!1\right). \end{align*}

Therefore, the grand finale, $$I = 4\pi \left(\frac{\pi}{2} - \arg \left(q^2\!+\!2iq\cos\alpha\!-\!1\right)\right) = 4\pi \operatorname{arccot} \frac{2q\cos\alpha}{q^2-1}.$$

To show this result is the same as the one found already, note that $$\left(\frac{2q\cos\alpha}{q^2-1}\right)^2 = \frac{4q^2\sin^2 \left(\frac{\pi}{2} -\alpha\right)}{(q^2-1)^2} = \frac{4\sqrt5\sin^2 \left(\frac12 \arctan 2\right)}{(\sqrt5-1)^2} = 2\sqrt5\,\frac{1-\frac{1}{\sqrt5}}{(\sqrt5-1)^2} = \frac{1+\sqrt5}{2}.$$

Iyo31
  • 29
Machinato
  • 2,883
13

$\color{green}{\textbf{Version of 17.09.23.}}$

Let $\;y=\sqrt{\dfrac{1+x}{1-x}},\;$ then $\;x=\dfrac{1-y^2}{1+y^2},\;$ $$I=\int\limits_{-1}^1\dfrac1x\,\sqrt{\dfrac{1+x}{1-x}}\,\ln\,\dfrac{2x^2+2x+1}{2x^2-2x+1}\,\text dx = 4\int\limits_0^\infty \ln\,\dfrac{y^4-2y^2+5}{5y^4-2y^2+1}\,\dfrac{\text dy}{1-y^4}=I_0-I_1,$$ where $$I_0=2\int\limits_0^\infty \ln\,\dfrac{y^4-2y^2+5}{5y^4-2y^2+1}\,\dfrac{\text dy}{1-y^2},\quad I_1=2\int\limits_0^\infty \ln\,\dfrac{y^4-2y^2+5}{5y^4-2y^2+1}\,\dfrac{\text dy}{1+y^2}.\tag1$$ By the substitution $\;y=\dfrac1z\;$ easily to get $$\int\limits_1^\infty \ln\,\dfrac{y^4-2y^2+5}{5y^4-2y^2+1}\,\dfrac{\text dy}{1+y^2}=-\int\limits_0^1 \ln\,\dfrac{z^4-2z^2+5}{5z^4-2z^2+1}\,\dfrac{\text dz}{1+z^2}.$$ I.e. $$I_1=0.\tag2$$

On the other hand, $$I_{0}=I_{00}-I_{01},$$ where $$I_{00}=2\int\limits_0^\infty \ln\,\dfrac{y^4-2y^2+5}{(y^2+1)^2}\,\dfrac{\text dy}{1-y^2},\quad I_{01}=2\int\limits_0^\infty \ln\,\dfrac{5y^4-2y^2+1}{(y^2+1)^2}\,\dfrac{\text dy}{1-y^2},\tag3$$ By the substitution $\,y=\dfrac1z\,$ easily to get $$\int\limits_0^\infty \ln\,\dfrac{5y^4-2y^2+1}{(y^2+1)^2}\,\dfrac{\text dy}{1-y^2}=-\int\limits_0^\infty \ln\,\dfrac{z^4-2z^2+5} {(z^2+1)^2}\,\dfrac{\text dz}{1-z^2},$$ $$I_{01}=-I_{00},\quad I=2I_{00},\tag4$$

$$I=2I_{00}=4\int\limits_0^\infty \ln\,\dfrac{y^4-2y^2+5}{(y^2+1)^2}\,\dfrac{\text dy}{1-y^2}$$ $$=4\int\limits_0^\infty \dfrac{\ln(y^2-1-2i)+\ln(y^2-1+2i)-2\ln(y^2+1)}{1-y^2}\,\text dy$$ $$I=4(J(-1-2i)+J(-1+2i)-2J(1)),\tag5$$ where $$J(p)=\int\limits_0^\infty \dfrac{\ln(y^2+p)}{1-y^2}\,\text dy\tag6,$$ $$\dfrac{\,\text dJ(p)}{\,\text dp} =\int\limits_0^\infty \dfrac{\,\text dy}{(y^2+p)(1-y^2)} =\dfrac{F_1+F_2(p)}{1+p},$$ $$F_1=\int\limits_0^\infty \dfrac1{1-y^2}\,\text dy,\quad F_2(p)=\int\limits_0^\infty \dfrac1{y^2+p}\,\text dy.$$ By the substitution $\,y=\dfrac1t\,$ easily to get $$\int\limits_0^1 \dfrac1{1-y^2}\,\text dy =-\int\limits_1^\infty \dfrac1{1-t^2}\,\text dt,\quad F_1=0.$$ At the same time, $$F_2(p)=\dfrac1{\sqrt p}\,\arctan\dfrac{y}{\sqrt p}\bigg|_0^\infty =\dfrac \pi{2\sqrt p}.$$ Therefore, $$\dfrac{\,\text dJ(p)}{\,\text dp}=\dfrac\pi{2(1+p)\sqrt p},$$ $$J(p)=\int\dfrac\pi{1+p}\,\dfrac{\,\text dp}{2\sqrt p}=\pi \arctan \sqrt p + \text C.$$ From $(5)$ should $$\begin{align} &I=4\pi\left(\arctan\sqrt{-1-2i}+\arctan\sqrt{-1+2i} -2\arctan1\right)\\[4pt] &=4\pi\left(\arctan\dfrac{\sqrt{-1-2i}+\sqrt{-1+2i}}{1-\sqrt5} -\dfrac\pi2\right) =4\pi\left(\arctan\dfrac{\sqrt{2(\sqrt5-1)}}{1-\sqrt5} -\dfrac\pi2\right)\\[4pt] &=4\pi\left(\arctan\left(-\sqrt{\dfrac{\sqrt5+1}2}\right) -\dfrac\pi2\right) =4\pi\left(\pi-\arctan\sqrt{\dfrac{\sqrt5+1}2}-\dfrac\pi2\right),\\[4pt] &\color{green}{\mathbf{I=4\pi\operatorname{arccot}\sqrt{\varphi}\approx 8.37221162660127566162574712109841263808172805388220741371709,}} \end{align}$$ where $\;\varphi=\dfrac{\sqrt5+1}2\;$ is the golden ratio.

  • 2
    Nice solution. Although are you sure the wolfram alpha result is correct? For positive real a, it seems the integral should return a real value (assuming the Cauchy principal value), which means the imaginary term probably shouldn't be there. Wolfram also says the answer is for Re(a)>0 which is not that case for a = -1 +/- 2i. Maybe you could try Feynman integration if you want to do it explicitly. Or just look at the explicit antiderivative from Wolfram and treat it carefully. – Andrew Jun 23 '23 at 07:48
  • @Andrew Thank you for the deep comment! Honestly, I was not sure in the correctness of this integral too. Undoubtedly, if is real, then its negative value leads to the singularity of ln(z^2+) in the domain of the integration. At the same time, this problem does not exist in the task conditions. – Yuri Negometyanov Jun 25 '23 at 09:16
  • @Andrew New version (by your notes) is ready. – Yuri Negometyanov Sep 17 '23 at 15:32
12

Eight years later.

Starting from @Ron Gordon's substitution $$8 \int_0^{\infty} \frac{(u^2-1)(u^4-6 u^2+1)}{u^8+4 u^6+70 u^4+4 u^2+1} \log(u)\,du$$ since the roots of the polynomials in $\color{red}{ u^2}$ are simple, we can use partial fraction decomposition (I shall not type the formulae) and we face four integrals $$I=\int \frac \alpha {\beta x^2+\gamma}\log(x)\,dx$$ where all coefficients are complex numbers. Then $$I=\frac{i \alpha \left(\text{Li}_2\left(\frac{i x \sqrt{\beta }}{\sqrt{\gamma }}\right)-\text{Li}_2\left(-\frac{i x \sqrt{\beta }}{\sqrt{\gamma }}\right)+\log (x) \left(\log \left(1-\frac{i \sqrt{\beta } x}{\sqrt{\gamma }}\right)-\log \left(1+\frac{i \sqrt{\beta } x}{\sqrt{\gamma }}\right)\right)\right)}{2 \sqrt{\beta\gamma }}$$ which make $$J=\int_0^\infty \frac \alpha {\beta x^2+\gamma}\log(x)\,dx=\frac{i \alpha \left(\log ^2\left(\frac{i \sqrt{\beta }}{\sqrt{\gamma }}\right)-\log ^2\left(-\frac{i \sqrt{\beta }}{\sqrt{\gamma }}\right)\right)}{4 \sqrt{\beta\gamma }}=-\frac{\pi \alpha \log \left(\frac{\beta }{\gamma }\right)}{4 \sqrt{\beta\gamma }}$$ This gives as a result $$8 \int_0^{\infty} \frac{(u^2-1)(u^4-6 u^2+1)}{u^8+4 u^6+70 u^4+4 u^2+1} \log(u)\,du=\pi \left(\pi -\cot ^{-1}\left(\frac{1}{4} \sqrt{22+17 \sqrt{5}}\right)\right)$$ I have not been able to simplify further.

Edit

If you look at this question of mine, @Jyrki Lahtonen made the simplification I was not able to do.

9

I have a relatively straightforward elementary approach.

First you use the substitution $x \rightarrow -x$ and add the integrals to obtain $$I=\int_{-1}^1\frac1x\frac{1}{\sqrt{1-x^2}}\ln\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right)\ \mathrm dx.$$

A further substitution, $x\rightarrow\frac{2x}{1+x^2}$ yields

$$I=\int_{-1}^1\frac1x\ln\left(\frac{4 x^2+(x+1)^4}{4 x^2+(x-1)^4}\right)\ \mathrm dx=2\int_{-1}^1\frac1x\ln\left(4 x^2+(x+1)^4\right)\ \mathrm dx.$$

Define the function J by $$J(\lambda)=\int_{-1}^{1}\frac{\ln\left((x+1)^2+2\, i \,\lambda\, x\right)}{x} dx.$$ Then $$I=2(J(1)+J(-1)).$$

Differentiating under the integral sign gives $$J^{'}(\lambda)=2i\int_{-1}^{1}\frac{1}{\left((x+1)^2+2\, i \,\lambda\, x\right)} dx=\frac{i \pi}{\sqrt{\lambda^2-2i\lambda}}=\frac{i \pi}{\sqrt{1-(1+i\lambda)^2}}.$$

Hence $$J(\lambda)=\pi\arcsin(1+i\lambda)+C.$$ But $$J(0)=2\int_{-1}^{1}\frac{\ln\left(x+1\right)}{x} dx=\pi^2/2$$ which implies $C=0$, hence $$I=2\pi(\arcsin(1+I)+\arcsin(1-I))=4\pi\arcsin(\frac{1}{\phi})=4\,\pi\operatorname{arccot}\sqrt\phi$$ using standard identities.

Ivan
  • 770
  • 6
  • 8
6

Since this question receives a lot of answer recently, I thought I might partake as well. My solution to this historial question (on this site, at least) requires a lemma, namely: $$ \int_0^{\infty}{\frac{dx^2+e}{ax^4+bx^2+c}}\mathrm{d}x=\frac{ \pi}{2\sqrt{2\sqrt{ac}+b}}\left[ \frac{d}{\sqrt{a}}+\frac{e}{\sqrt{c}} \right] $$ This works for $a,b,c>0, d,e\in \mathbb{R}$. (the variable range can be larger, but this is enough for this question.) I shall provide a proof, too. The first time I derive this is though complex analysis, but here I will do it more elementarily.
To start with, assume $f$ is a even real function, then, \begin{align*} \int_{-\infty}^{\infty}{f\left( \frac{x}{p^2}-\frac{q^2}{x} \right) \mathrm{d}x}=&\underset{x=pqe^t}{\underbrace{\int_0^{\infty}{f\left( \frac{x}{p^2}-\frac{q^2}{x} \right) \mathrm{d}x}}}+\underset{x=pqe^{-t}}{\underbrace{\int_{-\infty}^0{f\left( \frac{x}{p^2}-\frac{q^2}{x} \right) \mathrm{d}x}}} \\ =&\int_{-\infty}^{\infty}{f\left( \frac{q}{p}\left( e^t-e^{-t} \right) \right) pqe^t\mathrm{d}t}+\int_{-\infty}^{\infty}{f\left( \frac{q}{p}\left( e^{-t}-e^t \right) \right) pqe^{-t}\mathrm{d}t} \\ =&\int_{-\infty}^{\infty}{f\left( 2\frac{q}{p}\sinh \left( t \right) \right) 2pq\cosh \left( t \right) \mathrm{d}t} \stackrel{2\frac{q}{p}\sinh \left( t \right) =x}{=}p^2\int_{-\infty}^{\infty}{f\left( x \right) \mathrm{d}x} \end{align*} So we have \begin{align*} &\int_0^{\infty}{\frac{dx^2+e}{ax^4+bx^2+c}}\mathrm{d}x=\frac{1}{2}\int_{-\infty}^{\infty}{\frac{dx^2+e}{ax^4+bx^2+c}}\mathrm{d}x \\ =&\frac{d}{2}\int_{-\infty}^{\infty}{\frac{x^2}{ax^4+bx^2+c}}\mathrm{d}x+\frac{e}{2}\int_{-\infty}^{\infty}{\frac{1}{ax^4+bx^2+c}}\mathrm{d}x \\ =&\frac{d}{2}\int_{-\infty}^{\infty}{\frac{x^2}{cx^4+bx^2+a}}\mathrm{d}x+\frac{e}{2}\int_{-\infty}^{\infty}{\frac{x^2}{ax^4+bx^2+c}}\mathrm{d}x \\ =&\frac{d}{2}\int_{-\infty}^{\infty}{\frac{1}{cx^2+b+\frac{a}{x^2}}}\mathrm{d}x+\frac{e}{2}\int_{-\infty}^{\infty}{\frac{1}{ax^2+b+\frac{c}{x^2}}}\mathrm{d}x \\ =&\frac{d}{2}\int_{-\infty}^{\infty}{\frac{1}{\left( \sqrt{c}x-\frac{\sqrt{a}}{x} \right) ^2+2\sqrt{ac}+b}}\mathrm{d}x+\frac{e}{2}\int_{-\infty}^{\infty}{\frac{1}{\left( \sqrt{a}x-\frac{\sqrt{c}}{x} \right) ^2+2\sqrt{ac}+b}}\mathrm{d}x \\ =&\frac{d}{2\sqrt{c}}\int_{-\infty}^{\infty}{\frac{1}{x^2+2\sqrt{ac}+b}}\mathrm{d}x+\frac{e}{2\sqrt{a}}\int_{-\infty}^{\infty}{\frac{1}{x^2+2\sqrt{ac}+b}}\mathrm{d}x \\ =&\frac{\pi}{2\sqrt{2\sqrt{ac}+b}}\left[ \frac{d}{\sqrt{a}}+\frac{e}{\sqrt{c}} \right] \end{align*}


Now, let's prove the integral at hand! Actually, let's prove a broader case. Given $r>\left| s \right|$, $$ \int_{-1}^1{\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\ln \left( \frac{\left( 2r-1 \right) x^2+2sx+1}{\left( 2r-1 \right) x^2-2sx+1} \right)}\mathrm{d}x=4\pi \mathrm{sgn} \left( s \right) \mathrm{arcsin} \left( \sqrt{r-\sqrt{r^2-s^2}} \right) $$ notice that $I\left( r,0 \right) =0$ and $I\left( r,-s \right) =-I\left( r,s \right) $, therefore we can only consider the case where $s>0$ \begin{align*} I\left( r,s \right) =&\int_{-1}^1{\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\ln \left[ \frac{\left( 2r-1 \right) x^2+2sx+1}{\left( 2r-1 \right) x^2-2sx+1} \right]}\mathrm{d}x \\ =&2\int_0^1{\frac{1}{x\sqrt{1-x^2}}\ln \left[ \frac{\left( 2r-1 \right) x^2+2sx+1}{\left( 2r-1 \right) x^2-2sx+1} \right]}\mathrm{d}x \\ \stackrel{(1)}{=}&2\int_0^{\frac{\pi}{2}}{\frac{1}{\cos \left( \theta \right)}\ln \left[ \frac{\left( 2r-1 \right) \cos ^2\left( \theta \right) +2s\cos \left( \theta \right) +1}{\left( 2r-1 \right) \cos ^2\left( \theta \right) -2s\cos \left( \theta \right) +1} \right]}\mathrm{d}\theta \\ \stackrel{(2)}{=}&4\int_0^1{\frac{1}{1-t^2}\ln \left[ \frac{\left( 2r-1 \right) \left( 1-t^2 \right) ^2+2s\left( 1-t^2 \right) \left( 1+t^2 \right) +\left( 1+t^2 \right) ^2}{\left( 2r-1 \right) \left( 1-t^2 \right) ^2-2s\left( 1-t^2 \right) \left( 1+t^2 \right) +\left( 1+t^2 \right) ^2} \right]}\mathrm{d}t \end{align*} Then differentiate \begin{align*} \partial_s I\left( r,s \right) =&4\int_0^1{\left[ \frac{1+t^2}{\left( r-s \right) t^4+\left( 2-2r \right) t^2+\left( r+s \right)}+\frac{1+t^2}{\left( r+s \right) t^4+\left( 2-2r \right) t^2+\left( r-s \right)} \right]}\mathrm{d}t \\ \stackrel{(3)}{=}&4\int_1^{\infty}{\left[ \frac{1+t^2}{\left( r+s \right) t^4+\left( 2-2r \right) t^2+\left( r-s \right)}+\frac{1+t^2}{\left( r-s \right) t^4+\left( 2-2r \right) t^2+\left( r+s \right)} \right]}\mathrm{d}t \\ =&2\int_0^{\infty}{\left[ \frac{1+t^2}{\left( r+s \right) t^4+\left( 2-2r \right) t^2+\left( r-s \right)}+\frac{1+t^2}{\left( r-s \right) t^4+\left( 2-2r \right) t^2+\left( r+s \right)} \right]}\mathrm{d}t \\ \stackrel{(4)}{=}&\frac{2\pi \left( \sqrt{r-s}+\sqrt{r+s} \right)}{\sqrt{r^2-s^2}\sqrt{2\sqrt{r^2-s^2}+2-2r}} \end{align*} Integrate again \begin{align*} I\left( r,\lambda \right) =\int_0^{\lambda}{\frac{\partial}{\partial s}I\left( r,s \right) \mathrm{d}s}=&\sqrt{2}\pi \int_0^{\lambda}{\frac{\sqrt{r-s}+\sqrt{r+s}}{\sqrt{r^2-s^2}\sqrt{\sqrt{r^2-s^2}+1-r}}\mathrm{d}s} \\ \stackrel{(5)}{=}&4\pi \sqrt{2r}\int_0^{X}{\frac{1}{\left( t^2+1 \right) \sqrt{\left( 1-2r \right) t^2+1}}\mathrm{d}t} \\ \stackrel{(6)}{=}&4\pi \int_0^{\tan \left( X \right)}{\frac{\sqrt{2r}\cos \left( \theta \right)}{\sqrt{1-2r\sin ^2\left( \theta \right)}}\mathrm{d}\theta} \\ =&4\pi \mathrm{arcsin} \left( \sqrt{2r}\sin \left( \tan \left( X \right) \right) \right) \\ =&4\pi \mathrm{arcsin} \left( \sqrt{r-\sqrt{r^2-\lambda ^2}} \right) \end{align*} (1) $x=\cos \left( \theta \right)$
(2) $\tan \left( \frac{\theta}{2} \right) =t$
(3) $t\rightsquigarrow \frac{1}{t}$
(4) Use the lemma
(5) $s=\frac{2rt}{1+t^2}$
(6) $t=\tan \left( \theta \right)$
(7) $X=\frac{r-\sqrt{r^2-\lambda ^2}}{\lambda}$


So, for this question, we have $r=1.5, s=1$, plug the value in, we got $$ \int_{-1}^1{\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\ln \left( \frac{2x^2+2x+1}{2x^2-2x+1} \right)}\mathrm{d}x=4\pi \mathrm{arcsin} \left( \sqrt{\frac{3-\sqrt{5}}{2}} \right) =4\pi \mathrm{arccot} \left( \sqrt{\frac{1+\sqrt{5}}{2}} \right) $$

oO_ƲRF_Oo
  • 1,230