15

I just stumbled across the fact that $\int_{-\infty}^{+\infty}{e^{-x^2}dx}=\sqrt{\pi}$. This intrigued my already-existing interest in integrals. It made me wonder, are there other integrals with crazy results?

Kurtbusch
  • 632

9 Answers9

12

One I just evaluated

$$\int_{-\infty}^{\infty} \frac{dx}{(e^x+x+1)^2+\pi^2} = \frac{2}{3}$$

or the ultimate insanity...

$$\int_{-1}^1\frac{dx}{x}\sqrt{\frac{1+x}{1-x}}\log\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right) = 4 \pi \operatorname{arccot}{\sqrt{\phi}} $$

where $\phi=(1+\sqrt{5})/2$ is the golden ratio.

Ron Gordon
  • 138,521
12

This one, which is another version of your integral$$ \int_{-\infty}^{+\infty}e^{-\left(x+ \tan x \right)^2} \mathrm{d}x=\sqrt{\pi},$$ or this strange family $$ \begin{align} \displaystyle \int_0^{1} \cfrac 1 {1 + \cfrac 1 {1 + \cfrac 1 {\ddots + \cfrac 1 { 1 + \psi (\left\{1/x\right\}+1)}}}} \mathrm{d}x & = \dfrac{F_{n-1}}{F_{n}} - \dfrac{(-1)^{n}}{F_{n}^2} \ln \left( \dfrac{F_{n+2}-F_{n}\gamma}{F_{n+1}-F_{n}\gamma} \right),\\\\ \end{align} $$ where $\left\{x\right\}=x-\lfloor x\rfloor$ denotes the fractional part of $x$, $\gamma$ is the Euler constant, $F_{n}$ are the Fibonacci numbers, $\psi:=\Gamma'/\Gamma$ is the digamma function and where the continued fraction has $n$ horizontal bars.

Olivier Oloa
  • 120,989
10

${\tt\mbox{Sophomore's Dream}}$: Discovered by Johann Bernoulli in 1697 !!!.

$$ \int_{0}^{1}x^{-x}=\sum_{n\ =\ 1}^{\infty}n^{-n} $$

Felix Marin
  • 89,464
9

$\displaystyle \int_0^{+\infty}\dfrac{\sin x}{x}dx=\dfrac{\pi}{2}$

$\displaystyle \int_0^{+\infty}\cos(x^2)dx=\dfrac{1}{2}\sqrt{\dfrac{\pi}{2}}$

Math.stackexchange is full of such beautiful formulae.

FDP
  • 13,647
9

$$\begin{align} \int_0^\infty\exp\Big(-\sqrt[n]x\Big)dx&=n! \\ \\ \int_0^1\Big(1-\sqrt[n]x\Big)^mdx&={m+n\choose n}^{-1}={m+n\choose m}^{-1} \\ \\ \int_0^1\ln\Big(1-\sqrt[n]x\Big)dx&=-H_n \\ \\ \lim_{n\to\infty}n\Big(1-\sqrt[n]x\Big)&=-\ln x \end{align}$$

Lucian
  • 48,334
  • 2
  • 83
  • 154
8

$$\large\int_{-\infty}^\infty\, \frac{1}{1+(x+\tan x)^2}\, dx= \pi $$

Venus
  • 10,966
7

$$\int_{\mathbf{R}}\frac{dx}{1+x^2}=\pi$$ and $$\frac{22}{7} - \pi = \int_0^1 \frac{(x-x^2)^4}{1+x^2}dx.$$

  • 6
    Actually, $\int_{\mathbb R} \frac{e^{itx}}{1+x^2} dx = e^{-|t|}\pi$ for any $t\in \mathbb R$. Note that the integrand is complex but the answer is real.. – Raclette Dec 08 '14 at 21:15
7

$$\int_0^{\infty}\left(\frac{3}{4}\right)^{\lfloor{x}\rfloor}\ dx=4$$ and $$\int_{-\infty}^{\infty}e^{-|x|}\ dx=2$$

homegrown
  • 3,678
5

Well I think $$\displaystyle \begin{align*} \int_{0}^{\frac{\pi}{2}} \theta \log^{3} (\tan\theta) \, d\theta &= \frac{7 \pi^{2}}{32} \zeta (3) + \frac{93}{16} \zeta (5). \end{align*}$$

is pretty interesting.

Joao
  • 1,390