Proposed:
$$\int_{-\alpha}^{\alpha}{x^k}\sqrt{\alpha+x\over \alpha-x}\ln^n\left({\alpha+x\over \alpha-x}\right)\mathrm dx=F(k,n)\tag1$$
Let $k=-1$ and $F(-1,n)=F(n)$
$$\int_{-\alpha}^{\alpha}{1\over x}\sqrt{\alpha+x\over \alpha-x}\ln^n\left({\alpha+x\over \alpha-x}\right)\mathrm dx=(-\pi)^{n+1}F(n)\tag2$$ Where $n,\alpha\ge1$
We have the following
$n=1\implies$ $F(1)=1$
$n=2\implies$ $F(2)=-1$
$n=3\implies$ $F(3)=2$
$n=4\implies$ $F(4)=-5$
$n=5\implies$ $F(5)=16$
$n=6\implies$ $F(6)=-61$
How can we find the closed form of $(2)?$
$u={\alpha+x\over \alpha-x}\implies dx={(\alpha-x)^2\over 2\alpha}$
$x=\alpha\cdot{u-1\over u+1}$
$(\alpha-x)^2={4\alpha^2\over (u+1)^2}$
$(2)\implies$
$$2\int_{0}^{\infty}{\sqrt{u}\over u^2-1}\cdot\ln^n(u)\mathrm du\tag3$$
$$....$$
$$\int_{-\alpha}^{+\alpha}{x^k}\sqrt{\alpha+x\over \alpha-x}\ln^n\left({\alpha+x\over \alpha-x}\right)~\mathrm dx=\alpha^{k+1}\int_{-1}^{+1}x^k\sqrt{\frac{1+x}{1-x}}\ln^n\left(\frac{1+x}{1-x}\right)~\mathrm dx$$
Secondly, consider this integral:
$$I_k(t)=\int_{-1}^{+1}x^k\left(\frac{1+x}{1-x}\right)^t~\mathrm dx$$
and note that
$$\frac{\partial I_k(t)}{\partial t^n}\bigg|{t=1/2}=\int{-1}^{+1}x^k\sqrt{\frac{1+x}{1-x}}\ln^n\left(\frac{1+x}{1-x}\right)~\mathrm dx$$
Those are my thoughts :-)
– Simply Beautiful Art Jun 12 '17 at 11:39