Elliptic curve version.
$2a^3+6ab^2n = c^3$ can be reduced to $v^2 = -12nx^4+6nx$ with $x=a/c,y=b/c, v=6nxy$.
Furthermore, we can tranform $v^2 = -12nx^4+6nx$ to $Y^2 = X^3-432n^3$ with $X=6n/x,Y=6nv/x^2$.
The solutions are derived from one of the generators, so it may not be the smallest.
(n,a,b,c)
(-197, 425716141676, 17561345519, -95739315770)
(-195, 2028, 131, -2886)
(-194, 306808280101845674, 10558172571357337, 261831462443345254)
(-191, 19652, 821, -986)
(-186, 162, 41, -666)
(-185, 23715170572, 805056269, 21263774126)
(-182, 152210180652894, 7057684092887, -107041044260514)
(-179, 256, 53, -904)
(-177, 1500, 5264447, -3534330)
(-174, 6, 1, -18)
(-173, 4000000, 1838360791, -2411975800)
(-170, 144, 5, 132)
(-167, 1, 1, -10)
(-161, 4442376652, 236037857, -3994761778)
(-159, 1029, 43, 714)
(-158, 304423498, 2560955153, -12369700078)
(-155, 25, 1, 20)
(-149, 79433915648, 3751090247, 14738891176)
(-146, 10658, 19847, -154322)
(-143, 169, 5, 182)
(-141, 607836, 6037, 755022)
(-137, 5756278756, 1896400265, -25527545782)
(-134, 2569424405062, 1495926864335, -16617711752314)
(-131, 1, 107, -208)
(-129, 12, 1, -18)
(-123, 96, 5, -12)
(-122, 7442, 389, -122)
(-119, 49, 31, -322)
(-114, 775235226, 52094663, -797509914)
(-113, 63253004, 8638589, -139147874)
(-110, 18, 1, -6)
(-109, 4500, 253, -1830)
(-107, 243, 29, -468)
(-106, 18, 1, 6)
(-105, 2888844, 141143, 2286942)
(-101, 907924000, 52423201, -247766140)
(-95, 361, 235, -2242)
(-89, 36, 1, 42)
(-87, 81, 5, 18)
(-86, 16, 1, -4)
(-83, 9, 5, -48)
(-78, 1014, 58735, -117858)
(-77, 67228, 83253539, -59932978)
(-74, 407625226, 30897005, -334158322)
(-71, 1, 5, -22)
(-69, 15972, 1255, -13134)
(-65, 676, 33581, -66742)
(-62, 16, 5, -52)
(-59, 9, 1, -12)
(-53, 2304, 13609, -51384)
(-51, 12, 1, -6)
(-47, 4, 1, -10)
(-42, 294, 2395, -7518)
(-41, 256, 11, 296)
(-38, 6498, 7057, -41838)
(-35, 49, 5, -28)
(-33, 12, 25, -114)
(-31, 9, 1, -6)
(-29, 288, 191, -1212)
(-26, 3042, 307, 2262)
(-23, 9, 1, 6)
(-17, 4, 29, -70)
(-15, 3, 1, -6)
(-14, 98, 31, -182)
(-11, 1, 1, -4)
(-6, 6, 1, 6)
(-5, 4, 1, 2)
(-2, 2, 1, -2)
(2, 18, 17, 42)
(5, 9, 1, 12)
(6, 6, 5, 18)
(11, 246924, 168275, 789222)
(14, 5058568998, 13722993145, 43138907994)
(15, 12, 43, 126)
(17, 36, 127, 390)
(23, 377606781684, 274693407295, 1592635446402)
(26, 10494278917902, 202621693481065, 406588108522206)
(29, 243, 7295, 13104)
(33, 12, 1, 18)
(35, 284784377187481164, 154212287927062829, 1136627710868147862)
(38, 2224710090824741532242298, 682526736456078049630579, 6368669335721179285647342)
(41, 288, 40955, 49164)
(42, 645918, 34007, 899262)
(43, 4, 11, 50)
(47, 71734416291045108, 2220116835128461, 94277936072724450)
(51, 514500, 413221, 3005730)
(53, 15166431, 10329073, 80493504)
(58, 1682, 25, 2146)
(59, 7358173787172289500, 8608159082661727764757, 5779158750471360655230)
(62, 24617358, 1598549, 37619010)
(65, 308172852, 30203753, 551979246)
(69, 81, 55, 468)
(71, 2203793333881819021004544, 9853319396397693506345, 2780540935484837082868632)
(74, 5723994783817163598634351926, 1393441383372024857043537865, 17445840971557474688254138278)
(77, 4261646277, 55593553, 5438792268)
(78, 667722042, 298862351, 3054806118)
(82, 2, 1, 10)
(83, 101401546779607829751759181824, 78095516271323295246676139023, 676839307868352923167913503536)
(85, 1, 1, 8)
(86, 11054250, 7107523, 66255630)
(87, 2670540192, 154541347, 4148286948)
(89, 4500, 105999947, 30000030)
(93, 3, 1, 12)
(101, 569277036000, 6183969793, 725692439940)
(105, 588, 565, 4914)
(106, 128, 5, 184)
(109, 4, 1, 14)
(110, 2558788532262, 246175379371, 5140697537226)
(113, 53757763452, 16747406609, 219208021578)
(114, 2890815729966, 327923088175, 6390219852198)
(119, 85778248500, 1543310322733, 5264153630610)
(123, 38901504, 2108117, 62601336)
(134, 69744445649988575971907142, 419714537773835540334275214965, 214564515347932269394392052626)
(137, 4775436, 972389, 15780114)
(141, 1500, 1, 1890)
(142, 18, 1, 30)
(149, 7716375, 414647, 12815880)
(155, 18456894399119616, 25901779522726321, 225904518368817288)
(158, 177521844998411170826779098, 1805092471425063874803121, 227259216648420795612185622)
(159, 203504954086656, 133367294253005, 1513952552186568)
(161, 8666532, 244085, 12165846)
(170, 81927315839221632, 3202809636185995, 125083122754631496)
(173, 14145645792229575872157, 705144424515109688777, 23490393278718337138440)
(177, 324, 23, 630)
(185, 493138113204901915743156, 38127741324790671795497, 1011726091067655550214238)
(186, 105456, 1955, 140868)
(191, 293286031033541406772830187500, 13454207475992182129546755850903, 39330626629787271278291036795550)
(195, 34304062637364, 189340166991769, 1128964881768282)
(197, 15991018092, 1748033461, 40398858570)
(a+bm)^k+(a-bm)^k = (c+dm)^k+(c-dm)^k, for k=3 has solution, (a,b,c,d)=(2,3,5,1) & m=(3)^(1/2) and for k=5, a=(1280)^(1/2), b=(255)^(1/2),c=(5)^(1/2),d=(4085)^(1/2) & m=1 – David Jan 12 '24 at 15:30