So I am trying to get a better understanding of real projective spaces $\mathbb{R}P^n$. I'm starting off by looking at $\mathbb{R}P^1$ and trying to construct it from first principles and showing that it is equivalent to the circle $S^1$. By "equivalent", we mean that there exists a homeomorphism $f:S^1\to\mathbb{R}P^1$, a.k.a a bicontinuous bijection, between the spaces.
Starting off with the actual construction of $\mathbb{R}P^1$, I know it is the quotient space $S^1/\sim$ where for $x,y\in S^1$, $x\sim y$ if and only if $x=\lambda y$ where $\lambda\in\{-1,1\}$. In other words, $x$ and $y$ are similar if they are antipodal to each other. Then $\mathbb{R}P^1=\{[x]:x,-x\in [x]\;\forall\;x\in S^1\}$, i.e. the set of equivalence classes of antipodal points on the circle.
So far so good.
The trouble comes for me in showing that this is homeomorphic to the circle. Taking the canonical projection map from $S^1$ to $\mathbb{R}P^1$ defined by $x\mapsto [x]$. To show this is a homeomorphism: Surjectivity is obvious, as is bicontinuity from the definition of quotient spaces. However, suppose $[x],[y]\in\mathbb{R}P^1$ and $[x]=[y]$. Then $x\in [y]$ and $y\in [x]$. This implies that either $x=y$, in which case huzzah, or $x=-y$, in which case we have a problem with injectivity. Am I missing something here? Is there some basic logic I'm not applying? Or do I need to try a different function as a homeomorphism? Any help would be much appreciated!