This may be rewritten as a polylogarithm :
$$\sum_{n=1}^\infty \frac {n^a}{b^n}=\sum_{n=1}^\infty \frac {\left(\frac 1b\right)^n}{n^{-a}}=\operatorname{Li}_{-a}\left(\frac 1b\right)$$
For positive integers $a$ you may use these formulas that is compute successive derivatives of $\frac z{1-z}$. More exactly :
$$\operatorname{Li}_{-a}(z)=\left(z\frac{\partial}{\partial z}\right)^a\frac z{1-z}=\sum_{k=0}^a k!\;S(a+1,k+1)\left(\frac z{1-z}\right)^{k+1}$$
with $S(n,k)$ the Stirling numbers of the second kind (replace $z$ by $\frac 1b$ in the final formula).
To see why this works begin with $a=0$ and note $z:=\frac 1b$ then we simply want the sum of a geometric series :
\begin{align}
\operatorname{Li}_0(z)&=\sum_{n=1}^\infty z^n=\frac z{1-z}\\
\operatorname{Li}_{-1}(z)&=\sum_{n=1}^\infty n\,z^n=\left(z\frac{\partial}{\partial z}\right)\sum_{n=1}^\infty z^n=\frac z{(1-z)^2}\\
\operatorname{Li}_{-2}(z)&=\sum_{n=1}^\infty n^2\,z^n=\left(z\frac{\partial}{\partial z}\right)\sum_{n=1}^\infty n\,z^n=\frac {z(1+z)}{(1-z)^3}\\
\end{align}
(and so on...)
Another nice formula is :
$$\operatorname{Li}_{-a}(z)=\frac 1{(1-z)^{a+1}}\sum_{k=0}^{a-1} E(a,k)\, z^{a-k}$$
with $E(a,k)$ the Eulerian numbers.