-1

What is $$\sum_{k =1}^{\infty}\frac{k^2}{2^k}$$

hiltot
  • 1
  • The answer is 6, but which known series is used to determine this? – hiltot Apr 20 '17 at 16:49
  • Atleast show some effort – K Split X Apr 20 '17 at 17:10
  • Maybe approximate with an integral and do integration by parts, differentiating the polynomial and integrating the exponential. But you should know you are expected to show some efforts if something looks like it could be homework. – mathreadler Apr 21 '17 at 10:03

3 Answers3

4

We generally use differentiation techniques for this.

We have that for all $x$ with $|x|<1$ the following holds:

$$\sum_{k\geq 0}x^k=\frac{1}{1-x}$$

Now differentiate both sides of the equality above: the LHS term by term, and the RHS as you would in calculus. Equality still holds because of uniform convergence. This will net you something like $\sum kx^{k-1}$, which you can multiply by $x$ to obtain $\sum kx^k$.

You then repeat the process to obtain your desired series, and evaluate it at $x=\frac12$.

Fimpellizzeri
  • 23,126
3

This is not the best way to find the value, but it shows that with some effort it can be evaluated:

\begin{align*} S= \sum_{k=1}^\infty \frac{k^2}{2^k} &= \frac{1}{2} + \frac 4 4 + \frac 9 8 + \frac{16}{16} + \frac{25}{32} + \frac{36}{64} + \frac{49}{128} + \cdots \\ \\ &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \cdots \\ \\ &\quad \quad +\frac{3}{4} + \frac{3}{8} + \frac{3}{16}+ \frac{3}{32} + \frac{3}{64} + \frac{3}{128}+ \cdots \\ \\ &\quad \quad \quad \quad+ \frac{5}{8} + \frac{5}{16}+ \frac{5}{32} + \frac{5}{64} + \frac{5}{128}+ \cdots \\ \\ & \quad \quad \quad \quad \quad \quad \vdots \\ \\ \\ &= 1\cdot 1 + 3 \cdot \frac{1}{2} + 5 \cdot \frac{1}{4} + 7 \cdot \frac{1}{8} + \cdots \\ \\ &= \sum_{n=0}^\infty \frac{2n+1}{2^n} = 2\cdot \underbrace{\sum_{n=0}^\infty \frac{n}{2^n}}_{=A}+ \underbrace{\sum_{n=1}^\infty \frac{1}{2^n}}_{=2} =S \end{align*}

So, $S=2A +2$.

\begin{align*} A&= \frac{1}{2}+ \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \cdots \\ \\ &= \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots \\ \\ & \quad \quad +\frac{1}{4}+ \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots \\ \\ & \quad \quad \quad \quad +\frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots \\ \\ & \quad \quad \quad \quad \quad \quad + \cdots \\ \\ &=1 + \frac{1}{2} + \frac{1}{4} + \cdots = 2=A \end{align*}

Therefore $S=2A+2 = 6$

ThePortakal
  • 5,158
1

hint: use induction to show that for your finite sum is hold $$\sum_{k=1}^m\frac{k^2}{2^k}=-4\, \left( 1/2 \right) ^{m+1} \left( m+1 \right) -6\, \left( 1/2 \right) ^{m+1}-2\, \left( 1/2 \right) ^{m+1} \left( m+1 \right) ^{2}+ 6 $$ note that for $m\to\infty$ we get $6$

Harsh Kumar
  • 2,846