0

How to go about summing $\sum_{k=0}^{\infty} \frac{k^2}{2^k}$.

sbp
  • 456

4 Answers4

2

Since $$\sum_{n=1}^{\infty}\frac{n}{2^n}=\sum_{n=0}^{\infty}\frac{n+1}{2^{n+1}}=\sum_{n=1}^{\infty}\frac{n}{2^{n+1}}+\sum_{n=0}^\infty\frac{1}{2^{n+1}}=\frac{1}{2}\sum_{n=1}^{\infty}\frac{n}{2^{n}}+1$$

implies that

$$\sum_{n=1}^{\infty}\frac{n}{2^n}=2$$

we can use the same trick to see that

\begin{align}\sum_{n=1}^{\infty}\frac{n^2}{2^n}=\sum_{n=0}^{\infty}\frac{(n+1)^2}{2^{n+1}}&=\frac{1}{2}\sum_{n=1}^{\infty}\frac{n^2}{2^{n}}+\sum_{n=1}^{\infty}\frac{n}{2^{n}}+\sum_{n=0}^\infty\frac{1}{2^{n+1}}\\&= \frac{1}{2}\sum_{n=1}^{\infty}\frac{n^2}{2^{n}}+3 \end{align}

therefore $$\sum_{n=0}^{\infty}\frac{n^2}{2^{n}}=\sum_{n=1}^{\infty}\frac{n^2}{2^{n}}=6$$

Axion004
  • 10,056
0

Write $c^k$ as the forward difference of $c^k/(c-1)$ with $c=1/2.$ Find the sum from $1$ to $n$ of the given expression by using the summation by parts formula twice. Then take the limit as $n$ goes to infinity.

Allawonder
  • 13,327
P. Lawrence
  • 5,674
  • The forward difference operator on a function f(x) is defined by – P. Lawrence Jan 09 '20 at 17:24
  • The forward difference operator on a function f(x) is defined by Df(x)=f(x+1)-f(x). The summation by parts formula relates the sum of fDg(x) f rom 1 to n to the sum of (D(f))g(x+1) and f(n+1)g(n+1) -f(1)g(1)I. The formula is analogous to integration by parts but there is shifting involved. – P. Lawrence Jan 09 '20 at 17:39