Is it possible to evaluate the sum: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4}$$ I expect it may be related to $\zeta^{\prime} (2)$: $$\zeta^{\prime} (2) = - \sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}$$
Is there an identity that works for my series, involving the natural logarithm, that is similar to the identity that: $$\sum_{n=0}^{\infty} \frac{1}{(n+a)(n+b)} = \frac{\psi(a) - \psi(b)}{a-b}$$
Also potentially related, the Lüroth analogue of Khintchine’s constant can be defined as the following: $$\sum_{n=1}^{\infty} \frac{\ln (n)}{n(n+1)}$$ as mentioned here.
After some work, the following can be shown: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{5\ln(2) + 4\ln(3)}{16} + \frac{1}{2} \sum_{k=3}^{\infty} \frac{1}{k} \text{tanh}^{-1} \left( \frac{2}{k} \right)$$ and furthermore: $$\sum_{k=3}^{\infty} \frac{1}{k} \text{tanh}^{-1} \left( \frac{2}{k} \right) = \int_{0}^{2} \left( \frac{\left(1-\pi x \cot(\pi x) \right)}{2x^2} + \frac{1}{x^2 - 1} + \frac{1}{x^2 -4} \right) \, dx$$
EDIT
I have derived yet another form for my sum of interest, however, I found this one interesting as it seems like it could potentially be solvable? $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \int_{0}^{\infty} \left( \frac{\psi^{(0)} (s+3) + \gamma}{(s+2)(s-2)} - \frac{25}{16 (s-2)(s+1)} \right) \, ds$$
From this, it is possible to obtain the following: $$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{\pi \gamma}{4} i + \frac{25}{48} (\ln (2) - i \pi) - \frac{1}{8} + \frac{1}{16} i \pi + \frac{1}{4} \int_{0}^{i \pi} \psi^{(0)} \left( \frac{4}{1+ e^{u}} \right) \, du$$
$$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = \frac{\pi \gamma}{4}i+\frac{25}{48} (\ln (2)-i \pi )+\frac{7 i \pi }{48}-\frac{1}{8}-\frac{\ln (2)}{3} -2 \int_0^{\infty } \frac{t \ln (\Gamma (1-i t))}{\left(t^2+4\right)^2} \, dt$$
$$\sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} = -\frac{1}{8}-\frac{i \pi }{4}+\frac{i \gamma \pi }{4}-\frac{\ln (2)}{16} - 2 \int_{0}^{\infty} \frac{t \ln (\Gamma (-i t)) }{(4+t^2)^2} \, dt$$
$$\implies \sum_{k=3}^{\infty} \frac{\ln (k)}{k^2 - 4} =\frac{25}{48} \ln (2) -\frac{1}{8} + \int_{1}^{\infty} \frac{\ln (v-1) \text{li} (v^2)}{v^5} \, dv$$ Where $\text{li}$ is the logarithmic integral function. $$\sum_{k=3}^{\infty} \frac{\ln(k)}{k^2-4} = \frac{3 \ln (2)}{16} - \frac{\pi^2+1}{8} - \frac{\pi}{2} \int_{0}^{\infty} \sin(4\pi x) (\psi (x) - \ln (x)) \, dx$$