Too long for a comment.
This problem looks very similar to this question.
Consider the more general case
$$I(a)=\sum_{k=2}^{\infty}\frac{\log( k)}{(k+a)^{3/2}}$$ and use a series expansion around $a=0$
$$\frac{\ln k}{(k+a)^{3/2}}=\sum_{n=0}^\infty \binom{-\frac{3}{2}}{n}\, k^{-n-\frac{3}{2}}\log (k)\,\, a^n$$
$$\sum_{k=2}^\infty \binom{-\frac{3}{2}}{n}\, k^{-n-\frac{3}{2}}\log (k)=\frac{2 \sqrt{\pi }}{\Gamma
\left(-n-\frac{1}{2}\right) \Gamma (n+1)} \,\zeta '\left(n+\frac{3}{2}\right)$$ making $a=2$ does not gives the correct answer.
For $\color{red}{a=1}$, this works like a charm with a fast convergence. Computing the partial sums (from $n=0$ to $n=p$), we have numerically
$$\left(
\begin{array}{cc}
p & \sum_{n=0}^p \\
5 & 3.490688272 \\
10 & 3.499057047 \\
15 & 3.498737820 \\
20 & 3.498749643 \\
25 & 3.498749222 \\
30 & 3.498749236
\end{array}
\right)$$
Same behaviour for any $a =\frac 3 2$ for a correct result.
Could the problem be related to the fact that
$$\lim_{n\to \infty } \, \frac{(2 n+3)\,\, \zeta '\left(n+\frac{5}{2}\right)}{(2n+2)
\,\, \zeta '\left(n+\frac{3}{2}\right)}=0.5000002500 \quad > \quad \frac 12$$
N[Sum[Log[k]/(k+2)^(3/2),{k,2,Infinity}],80]
gives $3.2269874138382259858799993951213658615526991749281667556412273599844657103288563$, while(PARI/GP) sumpos(k=2,log(k)/(k+2)^(3/2))
gives $3.2269874138382259858799993949523024137887834415745074284112130236326655149552720$. They disagree starting from 27th figure. – g.kov May 05 '21 at 19:11