This question occurs in Rudin's PMA, page 78, Exercise 5. Below is my trial of proof. Is it right? Any comments are welcome!
5. $\quad $For any two real sequences $\{a_n\}, \{b_n\},$ prove that
\begin{gather*}
\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty} a_n+\limsup_{n\to\infty} b_n,
\end{gather*}
provided the sum on the right is not of the form $\infty-\infty.$
proof: $\quad$ Put $a^*=\limsup\limits_{n\to\infty} a_n, b^*=\limsup\limits_{n\to\infty} b_n$ and $c^*=\limsup\limits_{n\to\infty} (a_n+b_n).$ We shall show $c^*\leq a^*+b^*.$
Since it is excluded that the right is of the form $\infty-\infty,$ if one of $a^*$ and $ b^*$ is $-\infty,$ then the assertion holds. So we assume that $a^*, b^*>-\infty.$ And if one of $a^*$ or $b^*$ is $+\infty,$ then $c^*=a^*+b^*,$ so we we need to consider the case $a^*, b^*\in\mathbb{R}.$
By Theorem 3.17 (see Page 56 of Rudin's PMA), for every $\epsilon>0$ there exists $N_1, N_2$ such that
\begin{gather*}
a_n<a^*+\frac{\epsilon}{2},\qquad \forall n>N_1,\\
b_n<b^*+\frac{\epsilon}{2},\qquad \forall n>N_2.
\end{gather*}
Hence we have
\begin{gather*}
a_n+b_n<a^*+b^*+\epsilon,\qquad \forall n>\max\{N_1, N_2\}.
\end{gather*}
Then, for every convergent subsequence $a_{\sigma(n)}+b_{\sigma(n)}$ of sequence $(a_n+b_n)_{n\in\mathbb{N}},$ we have
\begin{gather*}
\lim_{n\to\infty} (a_{\sigma(n)}+b_{\sigma(n)})\leq a^*+b^*+\epsilon.
\end{gather*}
Thus we see that $a^*+b^*+\epsilon$ is an upper bound of the set $C$ of subsequential limits of $(a_n+b_n)_{n\in\mathbb{N}}.$ Hence
$c^*=\sup C\leq a^*+b^*+\epsilon.$
By the arbitrariness of $\epsilon>0,$ it follows that $c^*\leq a^*+b^*.$
$\Box$