$a_n$ and $b_n$ are two bounden sequences Prove $$\liminf(a_n) + \liminf(b_n)\le \liminf(a_n +b_n)$$
Should I use $$\inf(a+b) = \inf(a) + \inf(b)$$ and i could not come up with how to proceed from this. Or should i use a different approach?
$a_n$ and $b_n$ are two bounden sequences Prove $$\liminf(a_n) + \liminf(b_n)\le \liminf(a_n +b_n)$$
Should I use $$\inf(a+b) = \inf(a) + \inf(b)$$ and i could not come up with how to proceed from this. Or should i use a different approach?
Let us write $$ \liminf u_n = \sup_{N}\inf_{n>N}u_n $$
When you replace $u_n$ with $a_n + b_n$ you get successively: $$ m>N\implies a_m + b_m \ge \inf_{n>N} a_n + \inf_{n>N} b_n \\ \inf_{n>N} [a_n + b_n] \ge \inf_{n>N} a_n + \inf_{n>N} b_n \\ \inf_{n>N} [a_n + b_n] \ge \sup_N\inf_{n>N} a_n + \inf_{n>N} b_n\\ \sup_N\inf_{n>N} [a_n + b_n] \ge \sup_N\inf_{n>N} a_n + \inf_{n>N} b_n $$