Prove that $$\limsup(a+b) \leq \limsup(a) + \limsup(b)$$ and $$\liminf(a+b) \geq \liminf(a) + \liminf(b)$$ where $a,b:\mathbb{N}\to \mathbb{R}$ are two bounded sequences.
I'm not sure where to begin on this proof.
Prove that $$\limsup(a+b) \leq \limsup(a) + \limsup(b)$$ and $$\liminf(a+b) \geq \liminf(a) + \liminf(b)$$ where $a,b:\mathbb{N}\to \mathbb{R}$ are two bounded sequences.
I'm not sure where to begin on this proof.