4

I want to prove that for two sequences, say $a_k$ and $b_k:$

$$ \limsup_{n \to \infty} \left(a_n + b_n \right) \leq \limsup_{n \to \infty} a_n +\limsup_{n \to \infty} b_n$$

If we let $M_n =\sup \{ a_k : k \geq n \}$ and $N_n = \sup \{ b_k : k\geq n \} $, then obviously

$$a_k +b_k \leq M_n+ N_n \Leftrightarrow \sup \{a_k+b_k: k \geq n \} \leq M_n + N_n$$

After that, the order limit theorem should suffice, right? Thanks.

JohnK
  • 6,444
  • 4
  • 28
  • 54

1 Answers1

2

You have defined $M_n$ and $N_n$ and you know that $$ \lim_{n\to\infty}M_n=\limsup_{n\to\infty}a_n\quad\text{and}\quad \lim_{n\to\infty}N_n=\limsup_{n\to\infty}b_n. $$ Next let $$ P_n=\sup\{a_k+b_k: k\ge n\}, \quad\text{and likewise}\quad \lim_{n\to\infty}P_n=\limsup_{n\to\infty}(a_n+b_n). $$ As you have noticed $$ P_n\le M_n+N_n. $$ Taking the limit in the above you are done.