Alternative proof 1, using the inequality $x\ge \log(x+1)$:
$$
\frac{a_n}{s_n}\ge\log\left(1+\frac{a_n}{s_n}\right)=\log\left(\frac{s_n+a_n}{s_n}\right)=\log(s_{n+1})-\log(s_n)\tag1
$$
Summing (1) from $n=1$ to $n=N$, the RHS telescopes:
$$
\sum_{n=1}^N\frac{a_n}{s_n}\ge\log(s_{N+1})-\log(s_1).
$$
But $s_n\to\infty$, so the series $\sum\frac{a_n}{s_n}$diverges.
Alternative proof 2, using theory of integration (apologies for the heavy machinery): Define the sequence $(f_n)$ of functions on $[0,\infty)$ by $f_n:=\frac1{s_n} I_{[0,s_n]}$. (So $f_n$ is a rectangle of height $\frac1{s_n}$ placed over the interval $[0,s_n]$.) Then $\int f_n=1$ for each $n$. But $f_n\to0$ pointwise (since $s_n\to\infty$), so $\int\lim f_n=0$. By the dominated convergence theorem, any $g$ that satisfies $|f_n|\le g$ for all $n$ must have $\int g=\infty$. Apply this conclusion to $g:=\sum_{n=1}^\infty\frac1{s_n}I_{[s_{n-1},s_n]}$, which has integral $\sum\frac{a_n}{s_n}$.