By the AM-GM inequality, for $m>n$
$$\frac{a_m}{a_{m-1}}+\frac{a_{m-1}}{a_{m-2}}+\ldots +\frac{a_{n+1}}{a_{n}}\ge (m-n)\cdot \sqrt[m-n]{\frac{a_m}{a_{m-1}}\frac{a_{m-1}}{a_{m-2}}\cdots\frac{a_{n+2}}{a_{n+1}}} =(m-n)\cdot\sqrt[m-n]{\frac{a_m}{a_{n+1}}}$$
and so with $S_n:=\sum_{k=1}^{n-1}\frac{a_{k+1}-a_k}{a_k}$,
$$\tag1S_m-S_n\ge (m-n)\left(\sqrt[m-n]{\frac{a_m}{a_{n+1}}}-1\right) $$
As the sequence of the $S_n$ is Cauchy (and non-decreasing), there exists $n$ such that $0\le S_m-S_n<1$ for all $m>n$. Using this and solving $(1)$ for $a_m$,
$$ \left(1+\frac1{m-n}\right)^{m-n}a_{n+1}\ge a_m.$$
We know that $\lim_{k\to\infty}\left(1+\frac1{k}\right)^{k}= e$, hence
$s:=\sup\left\{\,\left(1+\frac1{k}\right)^{k}\Bigm|k\in\Bbb N\right\}$ is finite and
$$a_k\le \max\{a_1,a_2,\ldots,a_n,sa_{n+1}\} $$
for all $k\in\Bbb N$.