Let $\{a_n\}$ be an increasing sequence greater than 1. Prove that: $\sum\limits_{n=1}^\infty\frac{a_{n+1}-a_n}{a_n\ln a_{n+1}}$ converges $\iff \{a_n\}$ is bounded.
$(\Longleftarrow)$ $\sum\limits_{n=1}^m\frac{a_{n+1}-a_n}{a_n\ln a_{n+1}}\le\sum\limits_{n=1}^m\frac{a_{n+1}-a_n}{a_1\ln a_1}=\frac{a_{m+1}-a_1}{a_1\ln a_1}$, getting the result.
I'm a little bit stuck on $(\implies)$. I know that if $\{a_n\}$ diverges, then $\sum\limits_{n=1}^\infty\frac{a_{n+1}-a_n}{a_n\ln a_n}$ diverges, using integrals to give an estimate. But the same method seems not to work here.