$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\large\mbox{Ramanujan Master Theorem}:$
With
$\ds{\quad{\sin\pars{\root{x}} \over \root{x}} =
\sum_{k = 0}^{\infty}\color{red}{\Gamma\pars{k + 1} \over \Gamma\pars{2k + 2}}{\pars{-x}^{k} \over k!}}$:
\begin{align}
&\bbox[5px,#ffd]{\int_{0}^{\infty}x^{s - 1}\sin\pars{x}
\,\dd x} =
{1 \over 2}\int_{0}^{\infty}
x^{\pars{\color{red}{s/2 + 1/2}}\ -\ 1}\,\,\,{\sin\pars{\root{x}} \over \root{x}}\,\dd x
\\[5mm] = &\
{1 \over 2}\,\Gamma\pars{{s \over 2} + {1 \over 2}}\,
{\Gamma\pars{-\bracks{s/2 + 1/2} + 1} \over \Gamma\pars{-2\bracks{s/2 + 1/2} + 2}}
\\[5mm] = &\
{1 \over 2}\,\,
{\Gamma\pars{1/2 + s/2}\Gamma\pars{1/2 - s/2} \over \Gamma\pars{1 - s}} =
{1 \over 2}\,\,
{\pi/\sin\pars{\pi\bracks{1/2 + s/2}} \over
\pi/\bracks{\Gamma\pars{s}\sin\pars{\pi s}}}
\\[5mm] = &\
{1 \over 2}\,\Gamma\pars{s}\,{\sin\pars{\pi s} \over \cos\pars{\pi s/2}} =
\bbx{\Gamma\pars{s}\sin\pars{\pi s \over 2}} \\ &
\end{align}