11

I am trying to find the Mellin transform of $\sin x $, put in other words to solve:

$$\int^{\infty}_0 x^{s-1}\sin x \mathrm{d} x $$

And I know that the answer is:

$$\Gamma(s) \sin \left(\frac{\pi s}{2}\right)$$

From several tables on the internet but I couldn't find any justification.

How can this identity be proven?

Zacky
  • 27,674

3 Answers3

12

The basic idea is to use Euler's formula: $\sin x = \dfrac{e^{ix}-e^{-ix}}{2i}$.

Let's look at the Mellin transform of $e^{ix}$:

$$\int_0^\infty e^{ix} x^{s-1}\,dx = \begin{bmatrix} x=it \\ dx = i\,dt\end{bmatrix} = \int_{0}^{-i\cdot\infty} e^{-t} (it)^{s-1} i\,dt = -i^s \int_{-i\cdot \infty}^0 e^{-t}t^{s-1}\,dt.$$

For certain values of $s$ (I will leave it to you to work out the details), you can deform the integral over the negative imaginary axis to an integral over the positive real axis: $$\int_{-i\cdot \infty}^0 e^{-t}t^{s-1}\,dt = -\int_0^\infty e^{-t}t^{s-1}\,dt = -\Gamma(s).$$

(Add a large quarter circle in the fourth quadrant, use Cauchys integral theorem and estimate $f(z) = e^{-z}z^{s-1}$ on the new quarter circle.)

Summing up, we get that Mellin transform of $e^{ix}$ is $$i^s\Gamma(s) = \exp(i\pi s/2) \Gamma(s).$$

Similarly, the Mellin transform of $e^{-ix}$ turns out to be $$i^{-s}\Gamma(s) = \exp(-i\pi s/2) \Gamma(s).$$

Forming the appropriate linear combination, the Mellin transform of $\sin x$ ends up as $$ \frac{\exp(i\pi s/2) + \exp(-i\pi s/2)}{2i} \Gamma(s) = \sin\frac{\pi s}2 \Gamma(s).$$

mrf
  • 43,639
  • 2
    Thanks mrf for puting so much time into that, I really appreciate it. The step I'm looking for is the the bit you've put in brackets about the fourth quadrant. How do you know to use that quadrant and not another? And how may I deform the curve? Thanks – Max Clifford May 06 '13 at 19:26
  • @MaxClifford You want to integrate along the ray from $-i\infty$ to $0$, which really means integrating from $-iR$ to $0$ and letting $R\to\infty$. You want to relate your integral with one over the positive real axis (i.e. from $0$ to $R$), to be able to compare with the $\Gamma$-function. Draw a picture. One of the few reasonable ways to connect the two rays is with a quarter circle in the fourth quadrant. (I hope you're familiar with ideas from complex analysis, in particular the residue theorem.) – mrf May 06 '13 at 19:42
5

Alternatively, the Mellin transform for $\sin x$ can be found by employing the following useful property for the Laplace transform: $$\int_0^\infty f(x) g(x) \, dx = \int_0^\infty \mathcal{L} \{f(x)\} (t) \cdot \mathcal{L}^{-1} \{g(x)\} (t) \, dt.$$ Noting that $$\mathcal{L} \{\sin x\}(t) = \frac{1}{1 + t^2},$$ and $$\mathcal{L}^{-1} \left \{\frac{1}{x^{1-s}} \right \} (t)= \frac{1}{\Gamma (1 - s)} \mathcal{L}^{-1} \left \{\frac{\Gamma (1 - s)}{x^{1-s}} \right \} (t) = \frac{t^{-s}}{\Gamma (1 - s)},$$ then \begin{align} \mathcal{M} \{\sin x\} &= \int_0^\infty \sin x \cdot \frac{1}{x^{1 - s}} \, dx\\ &= \int_0^\infty \mathcal{L} \{\sin x\} (t) \cdot \mathcal{L}^{-1} \left \{\frac{1}{x^{1 - s}} \right \} (t) \, dt\\ &= \frac{1}{\Gamma (1 - s)} \int_0^\infty \frac{t^{-s}}{1 + t^2} \, dt. \end{align} Setting $u = t^2$, one has \begin{align} \mathcal{M} \{\sin x\} &= \frac{1}{2 \Gamma (1 - s)} \int_0^\infty \frac{u^{-\frac{s}{2} - \frac{1}{2}}}{1 + u} \, du\\ &= \frac{1}{2 \Gamma (1 - s)} \operatorname{B} \left (\frac{1}{2} - \frac{s}{2}, \frac{1}{2} + \frac{s}{2} \right ) \tag1\\ &= \frac{1}{2 \Gamma (1 - s)} \Gamma \left (\frac{1}{2} - \frac{s}{2} \right ) \Gamma \left (\frac{1}{2} + \frac{s}{2} \right ) \tag2\\ &= \frac{1}{2 \Gamma (1 - s)} \Gamma \left [1 - \left (\frac{1}{2} + \frac{s}{2} \right ) \right ] \Gamma \left (\frac{1}{2} + \frac{s}{2} \right )\\ &= \frac{1}{2 \Gamma (1 - s)} \frac{\pi}{\sin \left (\frac{\pi}{2} + \frac{\pi s}{2} \right )} \tag3\\ &= \frac{1}{2 \Gamma (1 - s)} \frac{\pi}{\cos \left (\frac{\pi s}{2} \right )}\\ &= \frac{\Gamma (s) \sin (\pi s)}{2 \pi} \cdot \frac{\pi}{\cos \left (\frac{\pi s}{2} \right )} \tag4\\ &=\frac{\Gamma (s) \sin \left (\frac{\pi s}{2} \right ) \cos \left (\frac{\pi s}{2} \right )}{\cos \left (\frac{\pi s}{2} \right )}\\ &= \Gamma (s) \sin \left (\frac{\pi s}{2} \right ) \end{align} This is valid for $-1 < s < 1$.

Explanation

(1) Using $\operatorname{B} (x,y) = \displaystyle{\int_0^\infty \frac{t^{x - 1}}{(1 + t)^{x + y}} \, dt}$.

(2) Using $\operatorname{B}(x,y) = \dfrac{\Gamma (x) \Gamma (y)}{\Gamma (x + y)}$.

(3) Using the reflection formula for the gamma function: $\Gamma (1 - z) \Gamma (z) = \dfrac{\pi}{\sin (\pi z)}$.

(4) Again using the reflection formula for the gamma function.

Aadhaar Murty
  • 345
  • 1
  • 13
omegadot
  • 11,736
1

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\large\mbox{Ramanujan Master Theorem}:$

With $\ds{\quad{\sin\pars{\root{x}} \over \root{x}} = \sum_{k = 0}^{\infty}\color{red}{\Gamma\pars{k + 1} \over \Gamma\pars{2k + 2}}{\pars{-x}^{k} \over k!}}$: \begin{align} &\bbox[5px,#ffd]{\int_{0}^{\infty}x^{s - 1}\sin\pars{x} \,\dd x} = {1 \over 2}\int_{0}^{\infty} x^{\pars{\color{red}{s/2 + 1/2}}\ -\ 1}\,\,\,{\sin\pars{\root{x}} \over \root{x}}\,\dd x \\[5mm] = &\ {1 \over 2}\,\Gamma\pars{{s \over 2} + {1 \over 2}}\, {\Gamma\pars{-\bracks{s/2 + 1/2} + 1} \over \Gamma\pars{-2\bracks{s/2 + 1/2} + 2}} \\[5mm] = &\ {1 \over 2}\,\, {\Gamma\pars{1/2 + s/2}\Gamma\pars{1/2 - s/2} \over \Gamma\pars{1 - s}} = {1 \over 2}\,\, {\pi/\sin\pars{\pi\bracks{1/2 + s/2}} \over \pi/\bracks{\Gamma\pars{s}\sin\pars{\pi s}}} \\[5mm] = &\ {1 \over 2}\,\Gamma\pars{s}\,{\sin\pars{\pi s} \over \cos\pars{\pi s/2}} = \bbx{\Gamma\pars{s}\sin\pars{\pi s \over 2}} \\ & \end{align}

Felix Marin
  • 89,464