An alternative approach is to employ Feynman's Trick and Laplace Transforms to solve:
\begin{equation}
I = \int_0^\infty\ln^2(x)\sin\left(x^2\right)\:dx
\end{equation}
We first observe that:
\begin{equation}
I = \int_0^\infty\ln^2(x)\sin\left(x^2\right)\:dx = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\int_0^\infty x^k\sin\left(x^2\right)\:dx = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k)
\end{equation}
We proceed by solving $H(k)$. To do so, we introduce a new parameter $'t'$:
\begin{equation}
J(t; k) = \int_0^\infty x^k\sin\left(tx^2\right)\:dx
\end{equation}
(This is allowable through the Dominated Convergence Theorem). Thus:
\begin{equation}
H(k) = \lim_{t\rightarrow 1^+} J(t; k)
\end{equation}
Using Fubini's Theorem we now take the Laplace Transform with respect to '$t$'
\begin{align}
\mathscr{L}_t\left[J(t;k) \right] &= \int_0^\infty x^k\mathscr{L}_t\left[\sin\left(tx^2\right)\right]\:dx = \int_0^\infty \frac{x^{k + 2}}{s^2 + x^4}\:dx
\end{align}
As I address here we find this becomes:
\begin{align}
\mathscr{L}_t\left[J(t;k) \right] &= \frac{1}{4}\cdot \left(s^2\right)^{\frac{k + 2 + 1}{2} - 1} \cdot B\left(1 - \frac{k + 2 + 1 }{4}, \frac{k + 2 + 1 }{4} \right) = \frac{1}{4} s^{\frac{k - 1}{2}} B\left(1 - \frac{k + 3}{4} , \frac{k + 3}{4}\right)
\end{align}
Using the relationship between the Gamma and Beta Function we find:
\begin{equation}
\mathscr{L}_t\left[J(t;k) \right] = \frac{1}{4} s^{\frac{k - 1}{2}} \Gamma\left(1 - \frac{k + 3}{4}\right) \Gamma\left( \frac{k + 3}{4}\right)
\end{equation}
Using Euler's Reflection Formula we find:
\begin{equation}
\mathscr{L}_t\left[J(t;k) \right] = \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)}
\end{equation}
Taking the inverse Laplace Transforms is rather tricky here. To evaluate recall that:
\begin{equation}
I = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k) = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} J(t;k)\right]
\end{equation}
In this process we solve for $H(k)$ using
\begin{equation}
H(k) = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[\mathscr{L}_t\left[J(t; k)\right]\right]
\end{equation}
Thus, our definition of $I$ becomes:
\begin{align}
I &= \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2} H(k) = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} J(t;k)\right] = \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[\mathscr{L}_t\left[J(t; k)\right]\right]\right] \\
&= \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\mathscr{L}_t\left[J(t; k)\right]\right] = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)}\right]\right]
\end{align}
Because I'm lazy, I used Wolframalpha to evaluate the second derivate at $0$:
\begin{align}
I &= \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \lim_{k\rightarrow 0^+} \frac{d^2}{dk^2}\left[ \frac{1}{4} s^{\frac{k - 1}{2}} \frac{\pi}{\sin\left(\pi\left(\frac{k + 3}{4}\right) \right)}\right]\right] = \lim_{t\rightarrow 1^+} \mathscr{L}_s^{-1}\left[ \frac{\pi}{4}\left( \frac{3\pi^2}{8\sqrt{2}\sqrt{s}} + \frac{\ln^2(s)}{2\sqrt{2}\sqrt{s}} + \frac{\pi\ln(s)}{2\sqrt{2}\sqrt{s}}\right)\right] \\
&= \lim_{t\rightarrow 1^+} \left[ \frac{3\pi^3}{32\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{1}{\sqrt{s}}\right] + \frac{\pi}{8\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{\ln^2(s)}{\sqrt{s}}\right]+ \frac{\pi^2}{8\sqrt{2}} \mathscr{L}_s^{-1}\left[ \frac{\ln(s)}{\sqrt{s}}\right]\right] \\
&= \lim_{t\rightarrow 1^+} \left[ \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}\sqrt{t}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{
\left(\psi^{(0)}\left(\frac{1}{2}\right)-\ln(t)\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}\sqrt{t}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{
\psi^{(0)}\left(\frac{1}{2}\right)-\ln(t)}{\sqrt{\pi}\sqrt{t}}\right]\right] \\
&= \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{
\psi^{(0)}\left(\frac{1}{2}\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{
\psi^{(0)}\left(\frac{1}{2}\right)}{\sqrt{\pi}}\right]
\end{align}
Noting that
\begin{equation}
\psi^{(0)}\left(\frac{1}{2}\right) = -\gamma - 2\ln(2)
\end{equation}
Where $\gamma$ is the Euler–Mascheroni constant.
Thus,
\begin{align}
I = \frac{3\pi^3}{32\sqrt{2}} \left[ \frac{1}{\sqrt{\pi}}\right] + \frac{\pi}{32\sqrt{2}} \left[ \frac{
\left(\gamma + 2\ln(2)\right)^2 -\frac{\pi^2}{2}}{\sqrt{\pi}}\right]+ \frac{\pi^2}{16\sqrt{2}} \left[ \frac{
\gamma - 2\ln(2)}{\sqrt{\pi}}\right] = \frac{1}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+4\ln2)^2
\end{align}