Spurred on by this question, I decided to investigate a more generalised form:
\begin{equation} I_{m,n} = \int_0^{\infty} \ln^m(x)\sin\left(x^n\right)\:dx \end{equation}
Where $n,m \in \mathbb{N}$
I have formed a solution in terms of the Gamma Function but I'm unsure whether it can be expressed in terms of other Non-Elementary and/or Elementary Functions. Also very interested to see other approaches (Real + Complex Analysis).
To solve, we first observe that:
\begin{equation} I_{n,k} = \lim_{\phi\rightarrow 0^+} \frac{d^m}{d\phi^m}\int_0^\infty x^\phi \sin\left(x^n\right)\:dx \end{equation}
Here let:
\begin{equation} J_{n}(\phi) = \int_0^\infty x^\phi \sin\left(x^n\right)\:dx \end{equation}
We observe that we first must solve $J_{n,k}(\phi)$. To achieve we employ Feynman's Trick coupled with Laplace Transforms. This is allowable as the integrand conforms with both Fubini's Theorem and the Dominated Convergence Theorem. Here we introduce:
\begin{equation} H_{n}(t,\phi) = \int_0^\infty x^\phi \sin\left(tx^n\right)\:dx \end{equation}
Where
\begin{equation} J_{n}(\phi) = \lim_{t\rightarrow 1^+} H_{n}(t,\phi) \end{equation}
We now take the Laplace Transform of $H_{n}(t,\phi)$ with respect to $t$:
\begin{align} \mathscr{L}_t\left[H_{n}(t,\phi)\right] = \int_0^\infty x^\phi \mathscr{L}_t\left[\sin\left(tx^n\right)\right]\:dx = \int_0^\infty x^\phi \frac{x^n}{s^2 + x^{2n}} \:dx = \int_0^\infty \frac{x^{\phi + n}}{s^2 + x^{2n}} \:dx \end{align}
Thankfully (and as I address here) this integral can be evaluated easily: \begin{align} \mathscr{L}_t\left[H_{n}(t,\phi)\right] = \int_0^\infty \frac{x^{\phi + n}}{s^2 + x^{2n}} \:dx = \frac{1}{2n} \cdot \left(s^2\right)^{ \frac{\phi + n + 1}{2n} - 1}\cdot B\left(1 - \frac{\phi + n + 1}{2n}, \frac{\phi + n + 1}{2n} \right) \end{align} Using the relationship between the Beta Function and the Gamma Function:
\begin{equation} \mathscr{L}_t\left[H_{n}(t,\phi)\right] = \frac{1}{2n} s^{ \frac{\phi + n + 1}{n} - 2}\Gamma\left(1 - \frac{\phi + n + 1}{2n} \right)\Gamma\left(\frac{\phi + n + 1}{2n} \right) \end{equation}
We now resolve $H_{n}(t, \phi)$ by taking the Inverse Laplace Transform:
\begin{align} H_{n}(t,\phi)&=\mathscr{L}_s^{-1}\left[ \frac{1}{2n} s^{ \frac{\phi + n + 1}{n} - 2}\Gamma\left(1 - \frac{\phi + n + 1}{2n} \right)\Gamma\left(\frac{\phi + n + 1}{2n} \right)\right]\\ & = \frac{1}{2n} \cdot \frac{1}{\Gamma\left(2 - \frac{\phi + n + 1}{n}\right)t^{-\left(\frac{\phi + n + 1}{n} - 2 + 1\right)} } \cdot \Gamma\left(1 - \frac{\phi + n + 1}{2n} \right)\Gamma\left(\frac{\phi + n + 1}{2n} \right) \end{align}
We can now solve $J_n(\phi)$:
\begin{equation} J_{n}(\phi) = \lim_{t\rightarrow 1^+} H_{n}(t,\phi) = \frac{\Gamma\left(1 - \frac{\phi + n + 1}{2n} \right)\Gamma\left(\frac{\phi + n + 1}{2n} \right) }{2n\:\Gamma\left(2 - \frac{\phi + n + 1}{n}\right) } \end{equation}
And finally we have
\begin{equation} I_{m,n} = \int_0^{\infty} \ln^m(x)\sin\left(x^n\right)\:dx = \lim_{\phi\rightarrow 0^+} \frac{d^m}{d\phi^m} \left[\frac{\Gamma\left(1 - \frac{\phi + n + 1}{2n} \right)\Gamma\left(\frac{\phi + n + 1}{2n} \right) }{2n\:\Gamma\left(2 - \frac{\phi + n + 1}{n}\right) } \right] \end{equation}
For example, using the example as linked above we have $m = 2$, $n = 2$:
\begin{equation} I_{2,2} = \int_0^{\infty} \ln^2(x)\sin\left(x^2\right)\:dx = \lim_{\phi\rightarrow 0^+} \frac{d^2}{d\phi^2} \left[\frac{\Gamma\left(1 - \frac{\phi + 2 + 1}{2\cdot 2} \right)\Gamma\left(\frac{\phi + 2 + 1}{2\cdot2} \right) }{2n\:\Gamma\left(2 - \frac{\phi + 2 + 1}{2}\right) } \right] \end{equation}
I was too lazy to do it by hand, but evaluated through WolframAlpha we observe that:
\begin{equation} I_{2,2} = \int_0^{\infty} \ln^2(x)\sin\left(x^2\right)\:dx = \frac{1}{32}\sqrt{\frac{\pi}{2}}(2\gamma-\pi+4\ln2)^2 \end{equation}
As required