Let $(X,B,\mu)$ be a complete measure space,Show that $$\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}, \quad \forall f \in \bigcup_{p} \bigcap_{p \leqslant q<\infty} L^{q}$$ So,$\lim _{q \rightarrow \infty}\|f\|_{q}$ , $\|f\|_{\infty}$ are equal-norm with space $ L^{\infty} \cap\left(\bigcup_{p} \bigcap_{p \leqslant q} L^{q}\right)$.
Case 1: $m(X)<\infty $.It's easy to prove that.
Case 2: $m(X)=\infty $. I have no idea about it,And I started to doubt the correctness of this conclusion. Can somebody give me a hint for this problem or just give an example to prove that this is a wrong conclusion when $m(X)=\infty $.
Thanks in advance.