i'm trying to prove the next problem, and I wanted to know if my answer is correct.
Problem: Let $(\Omega,\mathcal{F},\mu)$ be a $\sigma$-finite measurable space. If $f\in L^p$ for all $p\in [1,\infty)$, show that $$\|f\|_{\infty} \leq \liminf_{p\to \infty}\|f\|_p.$$
Solution: Suppose $0<\mu (\Omega)\leq \infty$. Let $0\leq M\leq\|f\|_{\infty}$, and $A=\{x\in \omega:|f(x)|>M\}$, then $\mu (A)>0$ and $\liminf_{p\to \infty} \mu(A)^{1/p}=1$. Then, $$\liminf_{p\to \infty} \|f\|_p \geq M \liminf_{p\to \infty} \mu(A)^{1/p}=M,$$ for all $M\in [0,\|f\|_{\infty})$. Hence, $\|f\|_{\infty}\leq \liminf_{p\to \infty}\|f\|_p$.