The following question came in my quiz:
(True/False) Let $x \in \ell^{p_{0}}$ for some $1 \leq p_{0}<\infty .$ Then $\|x\|_{p} \rightarrow\|x\|_{\infty}$ as $p \rightarrow \infty$.
Where $\ell^{p}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): \sum_{j=1}^{\infty}\left|x_{j}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$, $ \|x\|_{p}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}$ and $\|x\|_{\infty}=\sup_{j \in \mathbb{N}}\left|x_{j}\right|$. I answered it true and gave the following reason:
Let $x \in \ell^{p_{0}}$ for some $1 \le p_{0}<\infty$, then $x \in \ell^{p}$ $\forall\, p \ge p_{0}$ since $\ell^{p_{0}} \subset \ell^{p}$. This implies $\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}$ is finite $\forall\, p \ge p_{0}$. If $\|x\|_{\infty}=0$, then $x=0$ and the convergence is trivial. If $\|x\|_{\infty}\ne0$, then $$\tag{1} \|x\|_{p}=\|x\|_{\infty}\left(\sum_{j=1}^{\infty}\left(\frac{\left|x_{j}\right|}{\|x\|_{\infty}}\right)^{p}\right)^{1 / p}.$$
Since $\lim _{j \rightarrow \infty}\left|x_{j}\right|=0$, the sequence $\left(\left|x_{n}\right|\right)_{n=1}^{\infty}$ converges to zero and $ \sup _{j \in \mathbb{N}}\left\{\left|x_{j}\right|\right\}=\left|x_{j^{\prime}}\right|$ for some $j^{\prime} \in \mathbb{N}$. Let $J:=\left\{j \in \mathbb{N}:| x_{j}|=\|x\|_{\infty}\right\}$, then $J$ is non empty $\left(j^{\prime} \in J\right)$ and the cardinality of $J$ is finite (otherwise $\left.\|x\|_{\infty}=0\right)$. Therefore, $ \displaystyle\lim_{p \to \infty} \sum_{j=1}^{\infty} \frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}} = |J|+ \lim_{p \to \infty}\sum_{j \notin J}\frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}}$ and since $\sum\left|x_{j}\right|^{p}$ is finite $\forall\, p \ge p_{0}$, $\sum \frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}}$ is also finite. Thus $$\tag{2} \lim_{p \to \infty} \sum_{ j\notin J} \frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}} = \sum_{j \notin J} \lim_{p \to \infty} \frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}} = 0 $$ and the result follows from $(1)$, as $||x||_{p} = ||x||_{\infty} $exp$\left( \frac{1}{p} \ln{\sum_{j=1}^{\infty} \frac{\left|x_{j}\right|^{p}}{||x||_{\infty}^{p}}}\right)$
However, the explanation in the answer sheet is marked incorrect. I don't understand where my mistake it.