I'm trying to solve below exercise in Brezis's Functional Analysis, i.e.,
Let $(\Omega, \mathcal F, \mu)$ be a finite measure space. Assume $f \in \bigcap_{p \in [1, \infty)} L^p (\Omega)$ and there is $C \in [0, \infty)$ such that $\|f\|_p \le C$ then $f \in L^\infty(\Omega)$.
Could you confirm if my below attempt is correct?
Could you confirm if the assumption $\mu(\Omega) < \infty$ is not needed?
Proof Fix $K> C$. We have $$ \mu (\{|f| \ge K\}) =\int 1_{\{|f|^p \ge K^p\}} \mathrm d \mu \le \int \frac{|f|^p}{K^p} 1_{\{|f|^p \ge K^p\}} \mathrm d \mu \le \bigg ( \frac{\|f\|_p}{K} \bigg)^p \le \bigg ( \frac{C}{K} \bigg)^p. $$
Taking the limit $p \to \infty$, we get $$ \mu (\{|f| \ge K\}) =0. $$
Hence $\|f\|_\infty \le K$ and thus $\|f\|_\infty \le C$. This completes the proof.