$\color{brown}{\textbf{The task standing.}}$
Firstly,
\begin{cases}
{\Large\int} \dfrac{\mathrm dt}{2t^2+1} = \dfrac{\arctan t\sqrt2}{\sqrt2}+\mathrm{const}\\[4pt]
{\Large\int} \dfrac{\mathrm dt}{(2t^2+1)^{k}} = \dfrac{t}{2(k-1)(2t^2+1)^{k-1}}
+\dfrac{2k-3}{2k-2}{\Large\int} \dfrac{\mathrm dt}{(2t^2+1)^{k-1}}\quad (k=2,3\dots)\\[4pt]
R_k = {\Large\int}_0^\infty \dfrac{\mathrm dt}{(2t^2+1)^{k}} = \dfrac{(2k-3)!!}{(2k-2)!!}\dfrac{\pi\sqrt2}8\quad (k=2,3\dots),\quad R_1 = \dfrac{\pi\sqrt2}4.\tag1
\end{cases}
Also, is known integral representation of the trigamma function in the form of
$$\int\limits_0^\infty\dfrac{t\,e^{-zt}}{1-e^{-t}}\mathrm dt
= \psi^{(1)}(z),$$
then
\begin{align}
&J_{k ,l} = \int\limits_0^\infty\dfrac{t\,\cosh kt}{\sinh lt}\mathrm dt
= \int\limits_0^\infty\dfrac{t\,(e^{-(l+k)t}+e^{-(l-k)t})}{1-e^{-2lt}}\mathrm dt
= \dfrac1{4l^2}\int\limits_0^\infty\dfrac{t\,\Big(e^{^{\Large\!-\frac{l+k}{2l}t}}+e^{^{\Large\!-\frac{l-k}{2l}t}}\Big)}{1-e^{-t}}\mathrm dt\\[4pt]
&= \dfrac{1}{4l^2}\left(\psi^{(1)}\left(\dfrac{l+k}{2l}\right)
+\psi^{(1)}\left(\dfrac{l-k}{2l}\right)\right)
= \dfrac{\pi^2}{4l^2\sin^2\dfrac{l-k}{2l}\pi},
\end{align}
$$J_{k,l}= \dfrac{\pi^2}{2l^2\left(1+\cos\dfrac kl\pi\right)}.\tag2$$
At last, substituion $x=e^{-t}$ presents the given integral in the form of
$$I_n=\int\limits_0^1\dfrac{x^{2n}\,\ln x\,\mathrm dx}{(1-x^2)(1+x^4)^n}
= -\dfrac1{2^{n+1}} \hat I_n,\quad \hat I_n =\int\limits_0^\infty\dfrac{t\,\mathrm dt}{\sinh t\cosh^n2t}.\tag3$$
$\color{brown}{\textbf{Starting values.}}$
Taking in account $(1)-(3)$, one can get
$$\hat I_0 = J_{0,1} = \dfrac12\psi^{(1)}\left(\dfrac{1}2\right) = \dfrac{\pi^2}4,\tag{4.1}$$
$$I_0 = -\dfrac12 \hat I_0 = -\dfrac{\pi^2}8
\approx -1.23370\,05501\,36170\tag{4.2}$$
(in accordance with the Wolfram Alpha result),
$$\hat I_1 = \int\limits_0^\infty\dfrac{t\cosh t\,\mathrm dt}{\sinh t \cosh t \cosh 2t}
= 4\int\limits_0^\infty\dfrac{t\cosh t\,\mathrm dt}{\sinh 4t} = 4J_{1,4},$$
$$\hat I_1 = \dfrac{\pi^2}{8\left(1+\cos\dfrac \pi4\right)} = \dfrac{\pi^2(2-\sqrt2)}8,\tag{5.1}$$
$$I_1=-\dfrac14\hat I_1 = -\dfrac{\pi^2(2-\sqrt2)}{32} = \approx -0.18067\,12625\,90655\tag{5.2}$$
(numeric calculations give $I_1 \approx -0.18067\,1$),
\begin{align}
&\hat I_2 = \int\limits_0^\infty\dfrac{t}{\sinh t\cosh^2 2t}\,\mathrm dt
= \int\limits_0^\infty\dfrac{t}{\sinh t}\,\mathrm d\tanh 2t
\,\overset{IBP}{=\!=\!=}\,
\dfrac{t\tanh 2t}{2\sinh t}\bigg|_0^\infty
\hspace{-80mu}\mathbf{\LARGE_{_\diagup\hspace{-11mu}\diagup}\hspace{3mu}^\diagup}\\[4pt]
&-\dfrac12\int\limits_0^\infty\dfrac{\sinh t - t\cosh t}{\sinh^2 t}
\,\dfrac{2\sinh t \cosh t}{\cosh 2t} \,\mathrm dt
= -\int\limits_0^\infty \dfrac{\cosh t\,\mathrm dt}{2\sinh^2t+1}
+ \int\limits_0^\infty\dfrac{t\cosh^2 t}{\sinh t\cosh 2t}\,\mathrm dt\\[4pt]
&= -R_1+ \dfrac12\int\limits_0^\infty\dfrac{t(1+\cosh 2t)}{\sinh t\cosh 2t}\,\mathrm dt
= - \dfrac{\pi\sqrt2}4+\dfrac12(\hat I_1+\hat I_0),
\end{align}
$$\hat I_2 = -\dfrac{\pi\sqrt2}4 + \dfrac{\pi^2(4-\sqrt2)}{16},\tag{6.1}$$
$$I_2 = \dfrac{\pi\sqrt2}{32}-\dfrac{\pi^2(4-\sqrt2)}{128}\approx -0.06054\,02925\,97236\tag{6.2}$$
(numeric calculations give $I_2 \approx -0.06054\,03$).
$\color{brown}{\textbf{Recurrence approach.}}$
If $m\ge2,$ then
\begin{align}
&\hat I_{m+1} = \int\limits_0^\infty\dfrac{t}{\sinh t\cosh^{m+1}2t}\,\mathrm dt
= \dfrac1{2}\int\limits_0^\infty\dfrac{t}{\sinh t\cosh^{m-1} 2t}\,\mathrm d\tanh 2t\\[4pt]
&\,\overset{IBP}{=\!=\!=}\,
\dfrac{t\tanh 2t}{2\sinh t\cosh^{m-1} 2t}\bigg|_0^\infty
\hspace{-120mu}\mathbf{\LARGE_{_\diagup\hspace{-11mu}\diagup}\hspace{3mu}^\diagup} \hspace{80mu}\\[4pt]
&-\dfrac12\int\limits_0^\infty\Biggl(\dfrac{2\sinh t\cosh t}{\sinh t\cosh^m 2t} -\dfrac{2t\sinh t\cosh^2 t}{\sinh^2 t\cosh^m 2t}-\dfrac{2(m-1)t\sinh^2 2t}{\sinh t\cosh^{m+1} 2t}\Biggr)\,\mathrm dt\\[4pt]
&= -\int\limits_0^\infty \dfrac{\cosh t\,\mathrm dt}{(2\sinh^2t+1)^m}
+\int\limits_0^\infty\dfrac{t\cosh^2 t}{\sinh t\cosh^{m} 2t}\,\mathrm dt
+ (m-1)\int\limits_0^\infty\dfrac{t\sinh^2 2t}{\sinh t\cosh^{m+1} 2t}\,\mathrm dt\\[4pt]
&= -R_m + \dfrac12\int\limits_0^\infty\dfrac{t(1+\cosh 2t)}{\sinh t\cosh^m 2t}\,\mathrm dt
+ (m-1)\int\limits_0^\infty\dfrac{t(\cosh^2 2t-1)}{\sinh t\cosh^{m+1} 2t}\,\mathrm dt,\\[4pt]
&\hat I_{m+1}= -\dfrac{(2m-3)!!}{2^{m+1}(m-1)!}\pi\sqrt2 - (m-1)\hat I_{m+1} +\dfrac12I_{m}+\dfrac{2m-1}2\hat I_{m-1},
\end{align}
$$\color{green}{\mathbf{\hat I_{m+1}= -\dfrac{(2m-3)!!}{(2m)!!}\dfrac{\pi\sqrt2}4 + \dfrac1{2m}\hat I_{m}+\dfrac{2m-1}{2m}\hat I_{m-1}.}}\tag7$$
In particular,
$$\hat I_3 = -\dfrac{\pi\sqrt2}{16}+\left(-\dfrac{\pi\sqrt2}{16}+\dfrac{\pi^2(4-\sqrt2)}{64}\right)-\dfrac{3\pi^2(2-\sqrt2)}{32},$$
$$\hat I_3 = -\dfrac{\pi\sqrt2}{8}+\dfrac{\pi^2(16-7\sqrt2)}{64},\tag{8.1}$$
$$I_3 = \dfrac{\pi\sqrt2}{128}-\dfrac{\pi^2(16-7\sqrt2)}{1024}\approx -0.02408\,83868\,33221\tag{8.2}$$
(numeric calculations give $I_3 -\approx 0.02408\,84$).
Finally, the table of the obtained values is below.
\begin{vmatrix}
m & \hat I_m & I_m\\
2 & 0.484322 & -0.06054\,03 \\
3 & 0.385414 & -0.02408\,838 \\
4 & 0.328998 & -0.01028\,119 \\
5 & 0.291587 & -0.00455\,6047 \\
6 & 0.264514 & -0.00206\,6516 \\
7 & 0.243774 & -0.00095\,2242 \\
8 & 0.227238 & -0.00044\,38242 \\
9 & 0.213657 & -0.00020\,86494 \\
10 & 0.202247 & -0.00009\,87534\,2 \\
11 & 0.192486 & -0.00004\,699365\tag9
\end{vmatrix}
The data of table $(9)$ correspond to the direct calculations of the given integral.
For example, numeric calculations give $$I_7 \approx 0.00095\,2242,$$
This confirms obtained formulas and the result structure in the common case.