As part of solving:
\begin{equation} I_m = \int_0^1 \ln\left(1 + x^{2m}\right)\:dx. \end{equation} where $m \in \mathbb{N}$. I found an unresolved component that I'm unsure how to start:
\begin{equation} G_m = \sum_{j = 0}^{m - 1} \left(c_j + 1\right)\ln\left(c_j + 1\right), \end{equation}
where $c_j = \cos\left(\frac{\pi}{2m}\left(1 + 2j\right) \right)$
I'm just looking for a starting point. Any tips would be greatly appreciated.
By the way, I was able to show (and this was part of the solution too) :
\begin{equation} \sum_{j = 0}^{m - 1} c_j = 0 \end{equation}
Edit: For those that may be interested. In collaboration with clathratus, we found that for $n > 1$
\begin{equation} \int_{0}^{1} \frac{1}{t^n + 1}\:dt = \frac{1}{n}\left[\frac{\pi}{\sin\left(\frac{\pi}{n} \right)}- B\left(1 - \frac{1}{n}, \frac{1}{n}, \frac{1}{2}\right)\right] \end{equation}
Or for any positive upper bound $x$: \begin{align} I_n(x) &= \int_{0}^{x} \frac{1}{t^n + 1}\:dt = \frac{1}{n}\left[\Gamma\left(1 - \frac{1}{n} \right)\Gamma\left(\frac{1}{n} \right)- B\left(1 - \frac{1}{n}, \frac{1}{n}, \frac{1}{x^n + 1}\right)\right] \end{align}
Here though, I was curious to investigate when $n$ was an even integer. This is my work:
Here we will consider $r = 2m$ where $m \in \mathbb{N}$. In doing so, we observe that the roots of the function are $m$ pairs of complex roots $(z, c(z))$ where $c(z)$ is the conjugate of $z$. To verify this:
\begin{align} x^{2m} + 1 = 0 \rightarrow x^{2m} = e^{\pi i} \end{align}
By De Moivre's formula, we observe that:
\begin{align} x = \exp\left({\frac{\pi + 2\pi j}{2m} i} \right) \mbox{ for } j = 0\dots 2m - 1, \end{align}
which we can express as the set
\begin{align} S &= \Bigg\{ \exp\left({\frac{\pi + 2\pi \cdot 0}{2m} i} \right) , \:\exp\left({\frac{\pi + 2\pi \cdot 1}{2m} i} \right),\dots,\:\exp\left({\frac{\pi + 2\pi \cdot (2m - 2)}{2m} i} \right)\\ &\qquad\:\exp\left({\frac{\pi + 2\pi \cdot (2m - 1)}{2m} i} \right)\Bigg\}, \end{align}
which can be expressed as the set of $2$-tuples
\begin{align} S &= \left\{ \left( \exp\left({\frac{\pi + 2\pi j}{2m} i} \right) , \:\exp\left({\frac{\pi + 2\pi(2m - 1 - j )}{2m} i} \right)\right)\: \bigg|\: j = 0 \dots m - 1\right\}\\ & = \left\{ (z_j, c\left(z_j\right)\:|\: j = 0 \dots m - 1 \right\} \end{align}
From here, we can factor $x^{2m} + 1$ into the form
\begin{align} x^{2m} + 1 &= \prod_{r \in S} \left(x + r_j\right)\left(x + c(r_j)\right) \\ &= \prod_{i = 0}^{m - 1} \left(x^2 + \left(r_j + c(r_j)\right)x + r_j c(r_j)\right) \\ &= \prod_{i = 0}^{m - 1} \left(x^2 + 2\Re\left(r_j\right)x + \left|r_j \right|^2\right) \end{align}
For our case here $\left|r_j \right|^2 = 1$ and $\Re\left(r_j\right) = \cos\left(\frac{\pi + 2\pi j}{2m} \right)= \cos\left(\frac{\pi}{2m}\left(1 + 2j\right)\right) = c_j$
\begin{align} \int_0^1 \log\left( x^{2m} + 1\right)\:dx &= \int_0^1 \log\left(\prod_{r \in S} \left(x^2 + 2c_jx+ \left|r_j \right|^2\right)\right)\\ &= \sum_{j = 0}^{m - 1} \int_0^1 \log\left(x^2 + 2c_jx + 1 \right)\\ &= \sum_{j = 0}^{m - 1} \left[2\sqrt{1 - c_j^2}\arctan\left(\frac{x + c_j}{\sqrt{1 - c_j^2}}\right) + \left(x + c_j\right)\log\left(x^2 + 2c_jx + 1\right) - 2x \right]_0^1 \\ &= \sum_{j = 0}^{m - 1} \left[ 2\sqrt{1 - c_j^2}\arctan\left(\sqrt{\frac{1 - c_j}{1 + c_j}} \right) + \log(2)c_j + \left(\log(2) - 2\right) + \left(c_j + 1\right)\log\left(c_j + 1\right) \right] \\ &= 2\sum_{j = 0}^{m - 1}\sqrt{1 - c_j^2}\arctan\left(\sqrt{\frac{1 - c_j}{1 + c_j}} \right) + \log(2)\sum_{j = 0}^{m - 1} c_j + m\left(\log(2) - 2\right)\\ &\qquad+ \sum_{j = 0}^{m - 1}\left(c_j + 1\right)\log\left(c_j + 1\right) \end{align}
Thus,
\begin{align} \int_0^1 \log\left( x^{2m} + 1\right)\:dx &=\sum_{j = 0}^{m - 1}c_j\sin\left(\frac{\pi}{2m}\left(1 + 2j\right)\right) + \log(2)\sum_{j = 0}^{m - 1} c_j + m\left(\log(2) - 2\right)\\ &\qquad+ \sum_{j = 0}^{m - 1}\left(c_j + 1\right)\log\left(c_j + 1\right) \end{align}