If $\displaystyle P=\int^{\pi}_{0}\frac{\sin(994 x)}{\sin x}\cdot \sin(1332x)\,dx$ and $\displaystyle Q=\int^{1}_{0}\frac{x^{338}(x^{1988}-1)}{x^2-1}\,dx$. Then $P\cdot Q^{-1}$ is
Try: put $x=e^{i\theta}$ in $\displaystyle Q=\int^{1}_{0}\frac{x^{338}(x^{1988}-1)}{x^2-1}dx$
$\displaystyle Q =\int \frac{e^{i338\theta}(e^{i1988\theta}-1)}{e^{i2x}-1}\cdot ie^{i\theta}d\theta$
$\displaystyle Q=\int\frac{(\cos (1332x)+i\sin (1332 x))\cdot \sin(994x)}{\sin x}\cdot i dx$
Could some help me How to convert limit and solve that integral . Thanks